
CSE 311: Foundations of Computing

Lecture 27:   Irregularity



Recap from last lecture

Transform 𝑛-state NFA to 2𝑛-state DFA:

• DFA simulates the set of reachable 

NFA states

⊆
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Transform NFA to RE:

• Allow generalized NFA where edges labelled 

with REs

• Reduce Generalized NFA one state after the 

other



Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

– Accept strings from {0,1,2}* where the digits 

mod 3 sum of the digits is 0
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Splicing out a state t1

Regular expressions to add to edges
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t0→t1→t0 :   10*2
t0→t1→t2 :   10*1
t2→t1→t0 :   20*2
t2→t1→t2 :   20*1
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Splicing out a state t1

Regular expressions to add to edges

t0 t2

0 ∪ 20*1
2 ∪ 10*1

t0→t1→t0 :   10*2
t0→t1→t2 :   10*1
t2→t1→t0 :   20*2
t2→t1→t2 :   20*1
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Splicing out state t2 (and then t0)

t0 t2
R1

R1:   0 ∪ 10*2
R2:   2 ∪ 10*1
R3:   1 ∪ 20*2
R4:   0 ∪ 20*1

R5:   R1 ∪ R2R4*R3

R4R2

R3

Final regular expression: R5*=

(0 ∪ 10*2 ∪ (2 ∪ 10*1)(0 ∪ 20*1)*(1 ∪ 20*2))*
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The story so far...

⊆

≡

REs
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≡



Languages and Representations!

All

Context-Free

Regular

Finite

0*
DFA

NFA

Regex

??? Main Event:

Prove there is 

a context-free 

language 

that isn’t 

regular.

{001, 10, 12}



The language of “Binary Palindromes” is Context-Free

S → ε | 0 | 1 | 0S0 | 1S1

Is it regular?



Is the language of “Binary Palindromes” Regular ?

Intuition (NOT A PROOF!): 

Q: What would a DFA need to keep track of to decide?



Is the language of “Binary Palindromes” Regular ?

Intuition (NOT A PROOF!): 

Q: What would a DFA need to keep track of to decide?

A: It would need to keep track of the “first part” of the input 

in order to check the second part against it

…but there are an infinite # of possible first parts and we 

only have finitely many states.

Proof idea: any machine that does not remember the entire first 

half will be wrong for some inputs



B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:

– Assume (for contradiction) that it’s possible.

– Therefore, some DFA (call it M) exists that recognizes B

– We want to show: M accepts or rejects a string it shouldn’t.

Key Idea 1: If two strings “collide” at any point, a 

DFA can no longer distinguish between them!
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The general proof strategy is:

– Assume (for contradiction) that it’s possible.

– Therefore, some DFA (call it M) exists that recognizes B

– We want to show: M accepts or rejects a string it shouldn’t.

Key Idea 1: If two strings “collide” at any point, a 

DFA can no longer distinguish between them!

Key Idea 2: Our machine M has a finite number of 

states which means if we have infinitely many 

strings, two of them must collide!

B = {binary palindromes} can’t be recognized by any DFA
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B = {binary palindromes} can’t be recognized by any DFA

Proof. Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.

Key Idea 2: Our machine has a finite number of states which means 

if we have infinitely many strings, two of them must collide!



B = {binary palindromes} can’t be recognized by any DFA

Proof. Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.

Since there are finitely many states in M and infinitely many 

strings in S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that 

end in the same state of M.

SUPER IMPORTANT POINT:  You do not get to choose 

what a and b are.  Remember, we’ve just proven they 

exist…we have to take the ones we’re given!



B = {binary palindromes} can’t be recognized by any DFA

Proof. Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.

Since there are finitely many states in M and infinitely many strings in 
S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that end in the same 
state of M.

Now, consider appending 0a to both strings. 

Then, since 0a1 and 0b1 end in the same state, 0a10a and 0b10a

also end in the same state, call it q.

But then M makes a mistake: q needs to be an accept state since 

0a10a ∈ B, but M would accept 0b10a ∉ B which is an error.
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B = {binary palindromes} can’t be recognized by any DFA

Proof. Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.
Since there are finitely many states in M and infinitely many strings in 
S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that end in the same 
state of M.

Now, consider appending 0a to both strings. 

Then, since 0a1 and 0b1 end in the same state, 0a10a and 0b10a

also end in the same state, call it q.  But then M must make a 
mistake: q needs to be an accept state since 0a10a ∈ B, but then 
M would accept 0b10a ∉ B which is an error.

This is a contradiction since we assumed that M recognizes B. 
Since M was arbitrary, no DFA recognizes B. □
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Showing that a Language L is not regular

1. “Suppose for contradiction that some DFA M recognizes L.” 

2. Consider an INFINITE set S of “partial strings” (which we 

intend to complete later). It is imperative that for every pair

of strings in our set there is an “accept” completion that 

the two strings DO NOT SHARE.

3. “Since S is infinite and M has finitely many states, there 

must be two strings sa and sb in S for sa ≠ sb that end up at 

the same state of M.”

4. Consider appending t (depends on sa and sb) to each of the 

two strings.

5. “Since sa and sb both end up at the same state of M, and 

we appended the same string t, both sat and sbt end at the 

same state q of M. Since sat ∈ L and sbt ∉ L, M does not 

recognize L.”

6. “Since M was arbitrary, no DFA recognizes L.”



Lecture 27 Activity

You will be assigned to breakout rooms. Please:

• Introduce yourself

• Choose someone to share their screen, showing this PDF

• Fill in the gaps of the proof that the language 𝐴 = {0𝑛1𝑛: 𝑛 ≥ 0} is not regular.

Fill out the poll everywhere for Activity 

Credit!

Go to pollev.com/philipmg and login with 

your UW identity

1. Suppose for contradiction that some DFA, M, recognizes A.

2. Let S = {???}. Since S is infinite and M has finitely many states, there must be 

two distinct strings, ??? and ??? that end in the same state in M.

3. Consider appending t=??? to both strings.

4. Note that ???t ∈ A, but ???t ∉ A since ????. But they both end up in the same 

state of M, call it q. Since ???t ∈ A, state q must be an accept state but then 

M would incorrectly accept ???t ∉ A so M does not recognize A.

5. Since M was arbitrary, no DFA recognizes A.

http://pollev.com/philipmg


Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, accepts P.

Let S =



Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}.  Since S is infinite and M has finitely many 

states, there must be two strings, (a and (b for some a ≠ b that 

end in the same state in M.



Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}.  Since S is infinite and M has finitely many 

states, there must be two strings, (a and (b for some a ≠ b that 

end in the same state in M.

Consider appending  )a to both strings.  



Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}.  Since S is infinite and M has finitely many 

states, there must be two strings, (a and (b for some a ≠ b that 

end in the same state in M.

Consider appending  )a to both strings.  

Note that (a)a ∈ P, but (b)a ∉ P since a ≠ b.  But they both end up 

in the same state of M, call it q.  Since (a)a ∈ P, state q must be 

an accept state but then M would incorrectly accept (b)a ∉ P so 

M does not recognize P.    

Since M was arbitrary, no DFA recognizes P.



Showing that a Language L is not regular

1. “Suppose for contradiction that some DFA M recognizes L.” 

2. Consider an INFINITE set S of “partial strings” (which we 

intend to complete later). It is imperative that for every pair

of strings in our set there is an “accept” completion that 

the two strings DO NOT SHARE.

3. “Since S is infinite and M has finitely many states, there 

must be two strings sa and sb in S for sa ≠ sb that end up at 

the same state of M.”

4. Consider appending the (correct) completion t to each of 

the two strings.

5. “Since sa and sb both end up at the same state of M, and 

we appended the same string t, both sat and sbt end at the 

same state q of M.   Since sat ∈ L and sbt ∉ L, M does not 

recognize L.”    

6. “Since M was arbitrary, no DFA recognizes L.”



Fact:  This method is optimal

• Suppose that for a language L, the set S is a largest set of 

“partial strings” with the property that for every pair               

sa≠ sb ∈ S, there is some string t such that one of sat, sbt is 

in L but the other isn’t.

• If S is infinite, then L is not regular

• If S is finite, then the minimal DFA for L has precisely            

|S| states, one reached by each member of S.



Fact:  This method is optimal

• Suppose that for a language L, the set S is a largest set of 

“partial strings” with the property that for every pair               

sa≠ sb ∈ S, there is some string t such that one of sat, sbt is 

in L but the other isn’t.

• If S is infinite, then L is not regular

• If S is finite, then the minimal DFA for L has precisely            

|S| states, one reached by each member of S.

Corollary: Our minimization algorithm was correct.

– we separated exactly those states for which some t would make 

one accept and another not accept



Fact:  This method is optimal

• Suppose that for a language L, the set S is a largest set of 

“partial strings” with the property that for every pair               

sa≠ sb ∈ S, there is some string t such that one of sat, sbt is 

in L but the other isn’t.

• If S is infinite, then L is not regular

• If S is finite, then the minimal DFA for L has precisely            

|S| states, one reached by each member of S.

BTW:  There is another method commonly used to prove 

languages not regular called the Pumping Lemma that we 

won’t use in this course.  Note that it doesn’t always work.   


