Lecture 27: Irregularity
Recap from last lecture

<table>
<thead>
<tr>
<th>REs</th>
<th>\subseteq</th>
<th>CFGs</th>
</tr>
</thead>
<tbody>
<tr>
<td>\equiv</td>
<td></td>
<td>\equiv</td>
</tr>
<tr>
<td>DFAs</td>
<td></td>
<td>NFAs</td>
</tr>
</tbody>
</table>

Transform n-state NFA to 2^n-state DFA:
- DFA simulates the set of reachable NFA states

Transform NFA to RE:
- Allow generalized NFA where edges labelled with REs
- **Reduce** Generalized NFA one state after the other
Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

– Accept strings from \{0,1,2\}^* where the digits mod 3 sum of the digits is 0
Splicing out a state t_1

Regular expressions to add to edges

$t_0 \rightarrow t_1 \rightarrow t_0 : \ 10^*2$
$t_0 \rightarrow t_1 \rightarrow t_2 : \ 10^*1$
$t_2 \rightarrow t_1 \rightarrow t_0 : \ 20^*2$
$t_2 \rightarrow t_1 \rightarrow t_2 : \ 20^*1$
Splicing out a state t_1

Regular expressions to add to edges

$\begin{align*}
\text{t}_0 \rightarrow \text{t}_1 \rightarrow \text{t}_0 : & \ 10^*2 \\
\text{t}_0 \rightarrow \text{t}_1 \rightarrow \text{t}_2 : & \ 10^*1 \\
\text{t}_2 \rightarrow \text{t}_1 \rightarrow \text{t}_0 : & \ 20^*2 \\
\text{t}_2 \rightarrow \text{t}_1 \rightarrow \text{t}_2 : & \ 20^*1
\end{align*}$
Splicing out state t_2 (and then t_0)

R_1: $0 \cup 10^*2$
R_2: $2 \cup 10^*1$
R_3: $1 \cup 20^*2$
R_4: $0 \cup 20^*1$

R_5: $R_1 \cup R_2R_4*R_3$

Final regular expression: R_5^*=
$(0 \cup 10^*2 \cup (2 \cup 10^*1)(0 \cup 20^*1)\ast(1 \cup 20^*2))\ast$
The story so far...

\[
\text{REs} \subseteq \text{CFGs} \quad \equiv \quad \text{DFAs} \equiv \text{NFAs}
\]
Languages and Representations!

Main Event: Prove there is a context-free language that isn’t regular.

{001, 10, 12}
The language of “Binary Palindromes” is Context-Free

\[S \rightarrow \varepsilon \mid 0 \mid 1 \mid 0S0 \mid 1S1 \]

Is it regular?
Is the language of “Binary Palindromes” Regular?

Intuition (NOT A PROOF!):

Q: What would a DFA need to keep track of to decide?
Is the language of “Binary Palindromes” Regular?

Intuition (NOT A PROOF!):

Q: What would a DFA need to keep track of to decide?
A: It would need to keep track of the “first part” of the input in order to check the second part against it
 …but there are an infinite # of possible first parts and we only have finitely many states.

Proof idea: any machine that does not remember the entire first half will be wrong for some inputs
B = \{\text{binary palindromes}\} can’t be recognized by any DFA

The general proof strategy is:

– Assume (for contradiction) that it’s possible.
– Therefore, some DFA (call it \(M\)) exists that recognizes B
 – We want to show: \(M\) accepts or rejects a string it shouldn’t.

Key Idea 1: If two strings “collide” at any point, a DFA can no longer distinguish between them!
The general proof strategy is:
- Assume (for contradiction) that it’s possible.
- Therefore, some DFA (call it \(M \)) exists that recognizes \(B \).
- We want to show: \(M \) accepts or rejects a string it shouldn’t.

Key Idea 1: If two strings “collide” at any point, a DFA can no longer distinguish between them!

Key Idea 2: Our machine M has a finite number of states which means if we have infinitely many strings, two of them must collide!
$B = \{\text{binary palindromes}\}$ can’t be recognized by any DFA.

Proof. Suppose for contradiction that some DFA, M, recognizes B. We show M accepts or rejects a string it shouldn’t.

Consider $S = \{1, 01, 001, 0001, 00001, \ldots\} = \{0^n1 : n \geq 0\}$.

Key Idea 2: Our machine has a finite number of states which means if we have infinitely many strings, two of them must collide!
B = \{\text{binary palindromes}\} can’t be recognized by any DFA

Proof. Suppose for contradiction that some DFA, M, recognizes B. We show M accepts or rejects a string it shouldn’t.

Consider \(S = \{1, 01, 001, 0001, 00001, \ldots\} = \{0^n1 : n \geq 0\} \).

Since there are finitely many states in M and infinitely many strings in S, there exist strings \(0^a1 \in S \) and \(0^b1 \in S \) with \(a \neq b \) that end in the same state of M.

SUPER IMPORTANT POINT: You do not get to choose what \(a \) and \(b \) are. Remember, we’ve just proven they exist...we have to take the ones we’re given!
B = {binary palindromes} can’t be recognized by any DFA

Proof. Suppose for contradiction that some DFA, M, recognizes B. We show M accepts or rejects a string it shouldn’t.

Consider $S = \{1, 01, 001, 0001, 00001, \ldots\} = \{0^n1 : n \geq 0\}$.

Since there are finitely many states in M and infinitely many strings in S, there exist strings $0^a1 \in S$ and $0^b1 \in S$ with $a \neq b$ that end in the same state of M.

Now, consider appending 0^a to both strings.

![Diagram](image)

Then, since 0^a1 and 0^b1 end in the same state, 0^a10^a and 0^b10^a also end in the same state, call it q.

But then M makes a mistake: q needs to be an accept state since $0^a10^a \in B$, but M would accept $0^b10^a \notin B$ which is an error.
B = \{\text{binary palindromes}\} can’t be recognized by any DFA

Proof. Suppose for contradiction that some DFA, \(M\), recognizes \(B\). We show \(M\) accepts or rejects a string it shouldn’t.

Consider \(S = \{1, 01, 001, 0001, 00001, \ldots\} = \{0^n1 : n \geq 0\}\).

Since there are finitely many states in \(M\) and infinitely many strings in \(S\), there exist strings \(0^a1 \in S\) and \(0^b1 \in S\) with \(a \neq b\) that end in the same state of \(M\).

Now, consider appending \(0^a\) to both strings.

Then, since \(0^a1\) and \(0^b1\) end in the same state, \(0^a10^a\) and \(0^b10^a\) also end in the same state, call it \(q\). But then \(M\) must make a mistake: \(q\) needs to be an accept state since \(0^a10^a \in B\), but then \(M\) would accept \(0^b10^a \notin B\) which is an error.

This is a contradiction since we assumed that \(M\) recognizes \(B\). Since \(M\) was arbitrary, no DFA recognizes \(B\). \(\square\)
Showing that a Language \(L \) is not regular

1. “Suppose for contradiction that some DFA \(M \) recognizes \(L \).”

2. Consider an **INFINITE** set \(S \) of “partial strings” (which we intend to complete later). It is imperative that for every pair of strings in our set there is an “accept” completion that the two strings DO NOT SHARE.

3. “Since \(S \) is infinite and \(M \) has finitely many states, there must be two strings \(s_a \) and \(s_b \) in \(S \) for \(s_a \neq s_b \) that end up at the same state of \(M \).”

4. Consider appending \(t \) (depends on \(s_a \) and \(s_b \)) to each of the two strings.

5. “Since \(s_a \) and \(s_b \) both end up at the same state of \(M \), and we appended the same string \(t \), both \(s_a t \) and \(s_b t \) end at the same state \(q \) of \(M \). Since \(s_a t \in L \) and \(s_b t \notin L \), \(M \) does not recognize \(L \).”

6. “Since \(M \) was arbitrary, no DFA recognizes \(L \).”
Lecture 27 Activity

You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share their screen, showing this PDF
• Fill in the gaps of the proof that the language $A = \{0^n1^n: n \geq 0\}$ is not regular.

1. Suppose for contradiction that some DFA, M, recognizes A.
2. Let $S = \{???\}$. Since S is infinite and M has finitely many states, there must be two distinct strings, $???$ and $???$ that end in the same state in M.
3. Consider appending $t=???$ to both strings.
4. Note that $???t \in A$, but $???t \notin A$ since $????$. But they both end up in the same state of M, call it q. Since $???t \in A$, state q must be an accept state but then M would incorrectly accept $???t \notin A$ so M does not recognize A.
5. Since M was arbitrary, no DFA recognizes A.

Fill out the poll everywhere for Activity Credit!
Go to pollev.com/philipmg and login with your UW identity
Prove $P = \{\text{balanced parentheses}\}$ is not regular

Suppose for contradiction that some DFA, M, accepts P.

Let $S =$
Prove \(P = \{\text{balanced parentheses}\} \) is not regular

Suppose for contradiction that some DFA, \(M \), recognizes \(P \).

Let \(S = \{ (n : n \geq 0) \}. \) Since \(S \) is infinite and \(M \) has finitely many states, there must be two strings, \(a^n \) and \(b^n \) for some \(a \neq b \) that end in the same state in \(M \).
Prove \(P = \{ \text{balanced parentheses} \} \) is not regular

Suppose for contradiction that some DFA, \(M \), recognizes \(P \).

Let \(S = \{ (n : n \geq 0) \}. \) Since \(S \) is infinite and \(M \) has finitely many states, there must be two strings, \((a) \) and \((b) \) for some \(a \neq b \) that end in the same state in \(M \).

Consider appending \()^a \) to both strings.
Prove $P = \{\text{balanced parentheses}\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (n : n \geq 0) \}$. Since S is infinite and M has finitely many states, there must be two strings, (a) and (b) for some $a \neq b$ that end in the same state in M.

Consider appending $)a$ to both strings.

Note that $)a \in P$, but $(b)a \notin P$ since $a \neq b$. But they both end up in the same state of M, call it q. Since $)a \in P$, state q must be an accept state but then M would incorrectly accept $(b)a \notin P$ so M does not recognize P.

Since M was arbitrary, no DFA recognizes P.
1. “Suppose for contradiction that some DFA M recognizes L.”

2. Consider an **INFINITE** set S of “partial strings” (which we intend to complete later). It is imperative that for **every pair** of strings in our set there is an “accept” completion that the two strings DO NOT SHARE.

3. “Since S is infinite and M has finitely many states, there must be two strings s_a and s_b in S for $s_a \neq s_b$ that end up at the same state of M.”

4. Consider appending the (correct) completion t to each of the two strings.

5. “Since s_a and s_b both end up at the same state of M, and we appended the same string t, both s_at and s_bt end at the same state q of M. Since $s_at \in L$ and $s_bt \notin L$, M does not recognize L.”

6. “Since M was arbitrary, no DFA recognizes L.”
Fact: This method is optimal

- Suppose that for a language L, the set S is a largest set of “partial strings” with the property that for every pair $s_a \neq s_b \in S$, there is some string t such that one of $s_a t$, $s_b t$ is in L but the other isn’t.
- If S is infinite, then L is not regular
- If S is finite, then the minimal DFA for L has precisely $|S|$ states, one reached by each member of S.
Fact: This method is optimal

- Suppose that for a language \(L \), the set \(S \) is a largest set of "partial strings" with the property that for every pair \(s_a \neq s_b \in S \), there is some string \(t \) such that one of \(s_a t, s_b t \) is in \(L \) but the other isn’t.

- If \(S \) is infinite, then \(L \) is not regular

- If \(S \) is finite, then the minimal DFA for \(L \) has precisely \(|S| \) states, one reached by each member of \(S \).

Corollary: Our minimization algorithm was correct.

- we separated exactly those states for which some \(t \) would make one accept and another not accept
Fact: This method is optimal

• Suppose that for a language L, the set S is a largest set of “partial strings” with the property that for every pair $s_a \neq s_b \in S$, there is some string t such that one of $s_a t$, $s_b t$ is in L but the other isn’t.

• If S is infinite, then L is not regular

• If S is finite, then the minimal DFA for L has precisely $|S|$ states, one reached by each member of S.

BTW: There is another method commonly used to prove languages not regular called the Pumping Lemma that we won’t use in this course. Note that it doesn’t always work.