CSE 311: Foundations of Computing

Lecture 27: Irregularity

Recap from last lecture

Transform *n*-state NFA to 2^n -state DFA:

• DFA simulates the set of reachable NFA states

Transform NFA to RE:

- Allow generalized NFA where edges labelled with REs
- Reduce Generalized NFA one state after the other

Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

 Accept strings from {0,1,2}* where the digits mod 3 sum of the digits is 0

Regular expressions to add to edges

 $t_0 \rightarrow t_1 \rightarrow t_0: 10*2$ $t_0 \rightarrow t_1 \rightarrow t_2: 10*1$ $t_2 \rightarrow t_1 \rightarrow t_0: 20*2$ $t_2 \rightarrow t_1 \rightarrow t_2: 20*1$

Regular expressions to add to edges

 $t_0 \rightarrow t_1 \rightarrow t_0: 10*2$ $t_0 \rightarrow t_1 \rightarrow t_2: 10*1$ $t_2 \rightarrow t_1 \rightarrow t_0: 20*2$ $t_2 \rightarrow t_1 \rightarrow t_2: 20*1$

Splicing out state t_2 (and then t_0)

Final regular expression: $R_5^*=$ (0 U 10*2 U (2 U 10*1)(0 U 20*1)*(1 U 20*2))*

Languages and Representations!

The language of "Binary Palindromes" is Context-Free

 $\textbf{S} \rightarrow \epsilon \mid \textbf{0} \mid \textbf{1} \mid \textbf{0S0} \mid \textbf{1S1}$

Is it regular?

Intuition (NOT A PROOF!):

Q: What would a DFA need to keep track of to decide?

Intuition (NOT A PROOF!):

Q: What would a DFA need to keep track of to decide?

A: It would need to keep track of the "first part" of the input in order to check the second part against it

...but there are an infinite **#** of possible first parts and we only have finitely many states.

Proof idea: any machine that does not remember the entire first half will be wrong for some inputs

The general proof strategy is:

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- We want to show: M accepts or rejects a string it shouldn't.

Key Idea 1: If two strings "collide" at any point, a DFA can no longer distinguish between them!

The general proof strategy is:

- Assume (for contradiction) that it's possible.
- Therefore, some DFA (call it M) exists that recognizes B
- We want to show: M accepts or rejects a string it shouldn't.

Key Idea 1: If two strings "collide" at any point, a DFA can no longer distinguish between them!

Key Idea 2: Our machine M has a finite number of states which means if we have infinitely many strings, two of them must collide!

Proof. Suppose for contradiction that some DFA, M, recognizes B. We show M accepts or rejects a string it shouldn't. Consider S = $\{1, 01, 001, 0001, 00001, ...\} = \{0^n 1 : n \ge 0\}$.

Key Idea 2: Our machine has a finite number of states which means if we have infinitely many strings, two of them must collide!

Proof. Suppose for contradiction that some DFA, M, recognizes B. We show M accepts or rejects a string it shouldn't. Consider S = $\{1, 01, 001, 0001, 00001, ...\} = \{0^n 1 : n \ge 0\}$.

Since there are finitely many states in **M** and infinitely many strings in S, there exist strings $0^a 1 \in S$ and $0^b 1 \in S$ with $a \neq b$ that end in the same state of **M**.

SUPER IMPORTANT POINT: You do not get to choose what a and b are. Remember, we've just proven they exist...we have to take the ones we're given! **Proof.** Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn't.

Consider $S = \{1, 01, 001, 0001, 00001, ...\} = \{0^n 1 : n \ge 0\}.$

Since there are finitely many states in M and infinitely many strings in S, there exist strings $0^a 1 \in S$ and $0^b 1 \in S$ with $a \neq b$ that end in the same state of M.

Now, consider appending 0^a to both strings.

Then, since $0^{a}1$ and $0^{b}1$ end in the same state, $0^{a}10^{a}$ and $0^{b}10^{a}$ also end in the same state, call it q.

But then **M** makes a mistake: **q** needs to be an accept state since $0^a 10^a \in B$, but **M** would accept $0^b 10^a \notin B$ which is an error.

B = {binary palindromes} can't be recognized by any DFA

Proof. Suppose for contradiction that some DFA, M, recognizes B. We show M accepts or rejects a string it shouldn't. Consider S = {1, 01, 001, 0001, 00001, ...} = {0ⁿ1 : $n \ge 0$ }. Since there are finitely many states in M and infinitely many strings in S, there exist strings $0^a1 \in S$ and $0^b1 \in S$ with $a \ne b$ that end in the same state of M.

Now, consider appending 0^a to both strings.

Then, since $0^{a}1$ and $0^{b}1$ end in the same state, $0^{a}10^{a}$ and $0^{b}10^{a}$ also end in the same state, call it q. But then M must make a mistake: q needs to be an accept state since $0^{a}10^{a} \in B$, but then M would accept $0^{b}10^{a} \notin B$ which is an error.

This is a contradiction since we assumed that M recognizes B. Since M was arbitrary, no DFA recognizes B. \Box

Showing that a Language L is not regular

- **1.** "Suppose for contradiction that some DFA M recognizes L."
- 2. Consider an INFINITE set S of "partial strings" (which we intend to complete later). It is imperative that for *every pair* of strings in our set there is an <u>"accept" completion</u> that the two strings DO NOT SHARE.
- 3. "Since S is infinite and M has finitely many states, there must be two strings s_a and s_b in S for s_a ≠ s_b that end up at the same state of M."
- Consider appending t (depends on s_a and s_b) to each of the two strings.
- 5. "Since s_a and s_b both end up at the same state of M, and we appended the same string t, both $s_a t$ and $s_b t$ end at the same state q of M. Since $s_a t \in L$ and $s_b t \notin L$, M does not recognize L."
- 6. "Since M was arbitrary, no DFA recognizes L."

Lecture 27 Activity

You will be assigned to breakout rooms. Please:

- Introduce yourself
- Choose someone to share their screen, showing this PDF
- Fill in the gaps of the proof that the language $A = \{0^n 1^n : n \ge 0\}$ is not regular.
 - **1**. Suppose for contradiction that some DFA, M, recognizes A.
 - Let S = {???}. Since S is infinite and M has finitely many states, there must be two distinct strings, ??? and ??? that end in the same state in M.
 - 3. Consider appending t=??? to both strings.
 - 4. Note that ???t ∈ A, but ???t ∉ A since ????. But they both end up in the same state of M, call it q. Since ???t ∈ A, state q must be an accept state but then M would incorrectly accept ???t ∉ A so M does not recognize A.
 - 5. Since M was arbitrary, no DFA recognizes A.

Fill out the poll everywhere for Activity Credit!

Go to **pollev.com/philipmg** and login with your UW identity

Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, accepts P.

Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (n : n \ge 0 \}$. Since S is infinite and M has finitely many states, there must be two strings, (a and (b for some a \neq b that end in the same state in M.

Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (^n : n \ge 0 \}$. Since S is infinite and M has finitely many states, there must be two strings, (^a and (^b for some a \neq b that end in the same state in M.

Consider appending)^a to both strings.

Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (^n : n \ge 0 \}$. Since S is infinite and M has finitely many states, there must be two strings, (^a and (^b for some a \neq b that end in the same state in M.

Consider appending)^a to both strings.

Note that $(^{a})^{a} \in P$, but $(^{b})^{a} \notin P$ since $a \neq b$. But they both end up in the same state of M, call it **q**. Since $(^{a})^{a} \in P$, state **q** must be an accept state but then M would incorrectly accept $(^{b})^{a} \notin P$ so M does not recognize P.

Since M was arbitrary, no DFA recognizes P.

Showing that a Language L is not regular

- **1.** "Suppose for contradiction that some DFA M recognizes L."
- 2. Consider an INFINITE set S of "partial strings" (which we intend to complete later). It is imperative that for *every pair* of strings in our set there is an <u>"accept" completion</u> that the two strings DO NOT SHARE.
- 3. "Since S is infinite and M has finitely many states, there must be two strings s_a and s_b in S for s_a ≠ s_b that end up at the same state of M."
- 4. Consider appending the (correct) completion **t** to each of the two strings.
- 5. "Since s_a and s_b both end up at the same state of M, and we appended the same string t, both $s_a t$ and $s_b t$ end at the same state q of M. Since $s_a t \in L$ and $s_b t \notin L$, M does not recognize L."
- 6. "Since M was arbitrary, no DFA recognizes L."

Fact: This method is optimal

- Suppose that for a language L, the set S is a largest set of "partial strings" with the property that for every pair s_a≠ s_b ∈ S, there is some string t such that one of s_at, s_bt is in L but the other isn't.
- If **S** is infinite, then **L** is not regular
- If S is finite, then the minimal DFA for L has precisely
 |S| states, one reached by each member of S.

Fact: This method is optimal

- Suppose that for a language L, the set S is a largest set of "partial strings" with the property that for every pair s_a≠ s_b ∈ S, there is some string t such that one of s_at, s_bt is in L but the other isn't.
- If **S** is infinite, then **L** is not regular
- If S is finite, then the minimal DFA for L has precisely
 |S| states, one reached by each member of S.

Corollary: Our minimization algorithm was correct.

 we separated exactly those states for which some t would make one accept and another not accept

Fact: This method is optimal

- Suppose that for a language L, the set S is a largest set of "partial strings" with the property that for every pair s_a≠ s_b ∈ S, there is some string t such that one of s_at, s_bt is in L but the other isn't.
- If **S** is infinite, then **L** is not regular
- If S is finite, then the minimal DFA for L has precisely
 |S| states, one reached by each member of S.

BTW: There is another method commonly used to prove languages not regular called the Pumping Lemma that we won't use in this course. Note that it doesn't always work.