CSE 311: Foundations of Computing

Lecture 26: From NFAs to DFAs and from NFAs to REs
Recap: Concepts to describe languages

Regular expression: \((0 \cup 1)^*1(0 \cup 1)(0 \cup 1)\)

DFA:

NFA:
NFAs and DFAs

Every DFA is an NFA

- DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?
NFAs and DFAs

Every DFA is an NFA

- DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language
Three ways of thinking about NFAs

• Outside observer: Is there a path labeled by x from the start state to some final state?

• Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)

• Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
Parallel Exploration view of an NFA

Input string 0101100
Conversion of NFAs to a DFAs

• Proof Idea:
 – The DFA keeps track of ALL the states that the part of the input string read so far can reach in the NFA

 – There will be one state in the DFA for each *subset* of states of the NFA that can be reached by some string
Conversion of NFAs to a DFAs

New start state for DFA

– The set of all states reachable from the start state of the NFA using only edges labeled ε
Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of states of the NFA and each symbol s

- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
 - starting from some state in S, then
 - following one edge labeled by s, and
 - then following some number of edges labeled by ϵ
- T will be \emptyset if no edges from S labeled s exist
Conversion of NFAs to a DFAs

Final states for the DFA

– All states whose set contain some final state of the NFA

NFA

DFA

\(a, b, c, e\)
Example: NFA to DFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA

NFA

\[
\begin{array}{c}
\text{c} \\
\text{a} \\
\text{b} \\
\text{a,b} \\
\end{array}
\]

DFA

\[
\begin{array}{c}
\text{a,b} \\
\text{c} \\
\end{array}
\]
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA

NFA

DFA
Exponential Blow-up in Simulating Nondeterminism

• In general the DFA might need a state for every subset of states of the NFA
 – Power set of the set of states of the NFA
 – n-state NFA yields DFA with at most 2^n states
 – We saw an example where roughly 2^n is necessary
 “Is the n^{th} char from the end a 1?”

• The famous “P=NP?” question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms
The story so far...

\[
\begin{align*}
\text{REs} & \subseteq \text{CFGs} \\
\text{DFAs} & \equiv \text{NFAs}
\end{align*}
\]
Regular expressions \subseteq NFAs \equiv DFAs

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA
Regular expressions \equiv NFAs \equiv DFAs

We have shown how to build an optimal DFA for every regular expression
 - Build NFA
 - Convert NFA to DFA using subset construction
 - Minimize resulting DFA

Theorem: A language is recognized by a DFA (or NFA) if and only if it has a regular expression

You need to know this fact but we won’t ask you anything about the “only if” direction from DFA/NFA to regular expression. For fun, we sketch the idea.
Generalized NFAs

• Like NFAs but allow
 – Parallel edges
 – Regular Expressions as edge labels
 NFAs already have edges labeled ε or a

• An edge labeled by A can be followed by reading a string of input chars that is in the language represented by A

• Defn: A string x is accepted iff there is a path from start to final state labeled by a regular expression whose language contains x
Starting from an NFA

Add new start state and final state

Then eliminate original states one by one, keeping the same language, until it looks like:

Final regular expression will be A
Only two simplification rules

- **Rule 1**: For any two states q_1 and q_2 with parallel edges (possibly $q_1 = q_2$), replace

```
A
/q1
\B
q2
```

by

```
? 
```

- **Rule 2**: Eliminate non-start/final state q_3 by replacing all

```
A
/q1
\B
q3
\C
q2
```

by

```
A
/q1
\AB*C
q2
```

for every pair of states q_1, q_2 (even if $q_1 = q_2$)
Lecture 26 Activity

- You will be assigned to **breakout rooms**. Please:
 - Introduce yourself
 - Choose someone to share screen, showing this PDF
 - We are considering **Generalized NFAs** where we allow parallel edges and edges may be labelled with **regular expressions**.
 - Our overall goal is to transform an arbitrary such generalized NFA into one that only has a **single edge**.
 - Complete the following rule! Why does it work?

Rule 1: For any two states q_1 and q_2 with parallel edges (possibly $q_1=q_2$), replace

```
\begin{array}{c}
\text{q}_1 \\
\text{B} \\
\text{A} \\
\text{q}_2
\end{array}
```

by

```
? 
```

Fill out a poll everywhere for **Activity Credit**!
Go to pollev.com/thomas311 and login with your UW identity
Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

– Accept strings from \(\{0,1,2\}^* \) where the digits mod 3 sum of the digits is 0
Splicing out a state t_1

Regular expressions to add to edges

- $t_0 \rightarrow t_1 \rightarrow t_0 : \ 10*2$
- $t_0 \rightarrow t_1 \rightarrow t_2 : \ 10*1$
- $t_2 \rightarrow t_1 \rightarrow t_0 : \ 20*2$
- $t_2 \rightarrow t_1 \rightarrow t_2 : \ 20*1$
Splicing out a state t_1

Regular expressions to add to edges

$t_0 \rightarrow t_1 \rightarrow t_0 : 10^*2$
$t_0 \rightarrow t_1 \rightarrow t_2 : 10^*1$
$t_2 \rightarrow t_1 \rightarrow t_0 : 20^*2$
$t_2 \rightarrow t_1 \rightarrow t_2 : 20^*1$
Splicing out state t_2 (and then t_0)

R_1: $0 \cup 10*2$

R_2: $2 \cup 10*1$

R_3: $1 \cup 20*2$

R_4: $0 \cup 20*1$

R_5: $R_1 \cup R_2 R_4^* R_3$

Final regular expression: R_5^* =
$(0 \cup 10*2 \cup (2 \cup 10*1)(0 \cup 20*1)^*(1 \cup 20*2))^*$
The story so far...

\[\text{REs} \subseteq \text{CFGs}\]

\[\text{DFAs} \equiv \text{NFAs}\]
What languages have DFAs? CFGs?

All of them?
Languages and Representations!

- All
- Context-Free
- Regular
 - 0^*
 - DFA
 - NFA
 - Regex
- Finite
 - \{001, 10, 12\}
Languages and Representations!

Warmup: All finite languages are regular.
DFAs Recognize Any Finite Language
Construct a DFA for each string in the language.

Then, put them together using the union construction.
Languages and Machines!

All

Context-Free

Regular

0*

DFA

NFA

Regex

Finite

{001, 10, 12}

Warmup 2: Surprising example here
An Interesting Infinite Regular Language

$L = \{x \in \{0, 1\}^*: x \text{ has an equal number of substrings } 01 \text{ and } 10\}.$

L is infinite.

$0, 00, 000, ...$

L is regular. How could this be?

That seems to require comparing counts...

– easy for a CFG (see section: strings with equal # of 0s and 1s)
– but seems hard for DFAs!
An Interesting Infinite Regular Language

$L = \{x \in \{0, 1\}^*: x \text{ has an equal number of substrings } 01 \text{ and } 10\}$.

L is infinite.

$0, 00, 000, ...$

L is regular. How could this be? It is just the set of binary strings that are empty or begin and end with the same character!
Languages and Representations!

Main Event: Prove there is a context-free language that isn’t regular.

{001, 10, 12}