
CSE 311: Foundations of Computing

Lecture 20:  Regular expressions



Recap: Structural Induction

Consider a recursively defined set 𝑆:
• Basis step: Some specific elements are in 𝑆
• Recursive step: Given some existing named 

elements in 𝑆 some new objects constructed 
from these named elements are also in 𝑆.



Recap: Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:
• Base Case: Show that 𝑃(𝑢) is true for all specific elements 
𝑢 of 𝑆 mentioned in the Basis step

• Inductive Hypothesis:  Assume that 𝑃 is true for some 
arbitrary values of each of the existing named elements
mentioned in the Recursive step

• Inductive Step: Prove that 𝑃(𝑤) holds for each of the new 
elements 𝑤 constructed in the Recursive step using the 
named elements mentioned in the Inductive Hypothesis

• Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	

Consider a recursively defined set 𝑆:
• Basis step: Some specific elements are in 𝑆
• Recursive step: Given some existing named 

elements in 𝑆 some new objects constructed 
from these named elements are also in 𝑆.



Rooted Binary Trees

• Basis:  •    is a rooted binary tree
• Recursive step: 

If                and                are rooted binary trees,

then                      also is a rooted binary tree.   
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Defining Functions on Rooted Binary Trees

• size(•) = 1

• size ( ) = 1 + size(T1) + size(T2)

• height(•) = 0

• height ( )=1 + max{height(T1), height(T2)}

T1 T2

T1 T2



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 

rooted binary trees T1 and T2.
4. Inductive Step:             Goal:  Prove P( ).

By defn, size(             ) =1+size(T1)+size(T2)
≤ 1+2height(T1)+1–1+2height(T2)+1-1                    

by IH for T1 and T2
≤ 2height(T1)+1+2height(T2)+1–1
≤ 2(2max(height(T1),height(T2))+1)–1
≤ 2(2height(      ))–1 ≤ 2height(            )+1 –1

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.
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Languages:  Sets of Strings

• Sets of strings that satisfy special properties 
are called languages.  Examples:
– English sentences
– Syntactically correct Java/C/C++ programs
– S*=	All strings over alphabet  S
– Palindromes over  S
– Binary strings that don’t have a 0 after a 1
– Legal variable names. keywords in Java/C/C++
– Binary strings with an equal # of 0’s and 1’s



Regular Expressions

Regular expressions over S
• Basis:

e is a regular expression 
Æ is a regular expression
a is a regular expression for any a Î S

• Recursive step:
– If A and B are regular expressions then so are:

AÈ B
AB
A*



Each Regular Expression is a “pattern”

e matches the empty string
Æ does not match any string
a matches the one character string a
AÈ B matches all strings that either A matches or B

matches (or both)
AB matches all strings that have a first part that A

matches followed by a second part that B matches
A* matches all strings that have any number of 

strings (even 0) that A matches, one after another



Examples

001*



Examples

001*

{00, 001, 0011, 00111, …}



Examples

(0 È 1) 0 (0 È 1) 0

(0*1*)*



Examples

(0 È 1) 0 (0 È 1) 0

(0*1*)*

{0000, 0010, 1000, 1010}

All binary strings



Examples

(0 È 1)* 0110 (0 È 1)*

(00 È 11)* (01010 È 10001) (0 È 1)*



Examples

(0 È 1)* 0110 (0 È 1)*

(00 È 11)* (01010 È 10001) (0 È 1)*

Binary strings that contain “0110”

Binary strings that begin with pairs of characters
followed by “01010” or “10001”



Lecture 20 Activity
• You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share screen, showing this PDF 

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login 
with your UW identity

Which of these is the language of 0∗1∗?

a) The set of all binary strings with any 0s coming before all 1s
b) The set of all binary strings starting starting with 0 and ending with 1
c) The set of all binary strings
d) The set of all binary strings where every 0 is followed by a 1.

http://pollev.com/thomas311


Regular Expressions in Practice

• Used to define the “tokens”: e.g., legal variable names, 
keywords in programming languages and compilers

• Legal variable names in Java are
(𝑎 ∪ ⋯∪ 𝑧 ∪ 𝐴 ∪⋯∪ 𝑍 ∪ $ ∪ _ ) 𝑎 ∪ ⋯∪ 𝑧 ∪ 𝐴 ∪⋯∪ 𝑍 ∪ $ ∪ _ ∪ 1 ∪⋯∪ 9 ∗

• Used in grep, a program that does pattern matching 
searches in UNIX/LINUX

• Pattern matching using regular expressions is an essential 
feature of PHP

• We can use regular expressions in programs to process 
strings!



Regular Expressions in Java

• Pattern p = Pattern.compile("a*b"); 
• Matcher m = p.matcher("aaaaab"); 
• boolean b = m.matches();

[01] a 0 or a 1     ^ start of string     $ end of string
[0-9] any single digit       \. period    \, comma  \- minus
. any single character
ab         a followed by b            (AB)
(a|b) a or b (AÈ B)
a? zero or one of a            (AÈ e)
a* zero or more of a          A*
a+ one or more of a AA* 

• e.g.   ^[\-+]?[0-9]*(\.|\,)?[0-9]+$
General form of decimal number  e.g.  9.12  or -9,8 (Europe)



Limitations of Regular Expressions

• Not all languages can be specified by regular 
expressions

• Even some easy things like 
– Palindromes
– Strings with equal number of 0’s and 1’s

• But also more complicated structures in 
programming languages
– Matched parentheses
– Properly formed arithmetic expressions
– etc.


