
CSE 311: Foundations of Computing

Lecture 20: Regular expressions

Recap: Structural Induction

Consider a recursively defined set 𝑆:
• Basis step: Some specific elements are in 𝑆
• Recursive step: Given some existing named

elements in 𝑆 some new objects constructed
from these named elements are also in 𝑆.

Recap: Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:
• Base Case: Show that 𝑃(𝑢) is true for all specific elements
𝑢 of 𝑆 mentioned in the Basis step

• Inductive Hypothesis: Assume that 𝑃 is true for some
arbitrary values of each of the existing named elements
mentioned in the Recursive step

• Inductive Step: Prove that 𝑃(𝑤) holds for each of the new
elements 𝑤 constructed in the Recursive step using the
named elements mentioned in the Inductive Hypothesis

• Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	

Consider a recursively defined set 𝑆:
• Basis step: Some specific elements are in 𝑆
• Recursive step: Given some existing named

elements in 𝑆 some new objects constructed
from these named elements are also in 𝑆.

Rooted Binary Trees

• Basis: • is a rooted binary tree
• Recursive step:

If and are rooted binary trees,

then also is a rooted binary tree.

T1 T2

T1 T2

Defining Functions on Rooted Binary Trees

• size(•) = 1

• size () = 1 + size(T1) + size(T2)

• height(•) = 0

• height ()=1 + max{height(T1), height(T2)}

T1 T2

T1 T2

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”. We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some

rooted binary trees T1 and T2.
4. Inductive Step: Goal: Prove P().

By defn, size() =1+size(T1)+size(T2)
≤ 1+2height(T1)+1–1+2height(T2)+1-1

by IH for T1 and T2
≤ 2height(T1)+1+2height(T2)+1–1
≤ 2(2max(height(T1),height(T2))+1)–1
≤ 2(2height())–1 ≤ 2height()+1 –1

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”. We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some

rooted binary trees T1 and T2.
4. Inductive Step: Goal: Prove P().

By defn, size() =1+size(T1)+size(T2)
≤ 1+2height(T1)+1–1+2height(T2)+1-1

by IH for T1 and T2
≤ 2height(T1)+1+2height(T2)+1–1
≤ 2(2max(height(T1),height(T2))+1)–1
≤ 2(2height())–1 ≤ 2height()+1 –1

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”. We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some

rooted binary trees T1 and T2.
4. Inductive Step: Goal: Prove P().

By defn, size() =1+size(T1)+size(T2)
≤ 1+2height(T1)+1–1+2height(T2)+1-1

by IH for T1 and T2
≤ 2height(T1)+1+2height(T2)+1–1
≤ 2(2max(height(T1),height(T2))+1)–1
≤ 2(2height())–1 ≤ 2height()+1 –1

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”. We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some

rooted binary trees T1 and T2.
4. Inductive Step: Goal: Prove P().

By defn, size() =1+size(T1)+size(T2)
≤ 1+2height(T1)+1–1+2height(T2)+1-1

by IH for T1 and T2
≤ 2height(T1)+1+2height(T2)+1–1
≤ 2(2max(height(T1),height(T2))+1)–1
≤ 2(2height())–1 ≤ 2height()+1 –1

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.

Languages: Sets of Strings

• Sets of strings that satisfy special properties
are called languages. Examples:
– English sentences
– Syntactically correct Java/C/C++ programs
– S*=	All strings over alphabet S
– Palindromes over S
– Binary strings that don’t have a 0 after a 1
– Legal variable names. keywords in Java/C/C++
– Binary strings with an equal # of 0’s and 1’s

Regular Expressions

Regular expressions over S
• Basis:

e is a regular expression
Æ is a regular expression
a is a regular expression for any a Î S

• Recursive step:
– If A and B are regular expressions then so are:

AÈ B
AB
A*

Each Regular Expression is a “pattern”

e matches the empty string
Æ does not match any string
a matches the one character string a
AÈ B matches all strings that either A matches or B

matches (or both)
AB matches all strings that have a first part that A

matches followed by a second part that B matches
A* matches all strings that have any number of

strings (even 0) that A matches, one after another

Examples

001*

Examples

001*

{00, 001, 0011, 00111, …}

Examples

(0 È 1) 0 (0 È 1) 0

(0*1*)*

Examples

(0 È 1) 0 (0 È 1) 0

(0*1*)*

{0000, 0010, 1000, 1010}

All binary strings

Examples

(0 È 1)* 0110 (0 È 1)*

(00 È 11)* (01010 È 10001) (0 È 1)*

Examples

(0 È 1)* 0110 (0 È 1)*

(00 È 11)* (01010 È 10001) (0 È 1)*

Binary strings that contain “0110”

Binary strings that begin with pairs of characters
followed by “01010” or “10001”

Lecture 20 Activity
• You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share screen, showing this PDF

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login
with your UW identity

Which of these is the language of 0∗1∗?

a) The set of all binary strings with any 0s coming before all 1s
b) The set of all binary strings starting starting with 0 and ending with 1
c) The set of all binary strings
d) The set of all binary strings where every 0 is followed by a 1.

http://pollev.com/thomas311

Regular Expressions in Practice

• Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

• Legal variable names in Java are
(𝑎 ∪ ⋯∪ 𝑧 ∪ 𝐴 ∪⋯∪ 𝑍 ∪ $ ∪ _) 𝑎 ∪ ⋯∪ 𝑧 ∪ 𝐴 ∪⋯∪ 𝑍 ∪ $ ∪ _ ∪ 1 ∪⋯∪ 9 ∗

• Used in grep, a program that does pattern matching
searches in UNIX/LINUX

• Pattern matching using regular expressions is an essential
feature of PHP

• We can use regular expressions in programs to process
strings!

Regular Expressions in Java

• Pattern p = Pattern.compile("a*b");
• Matcher m = p.matcher("aaaaab");
• boolean b = m.matches();

[01] a 0 or a 1 ^ start of string $ end of string
[0-9] any single digit \. period \, comma \- minus
. any single character
ab a followed by b (AB)
(a|b) a or b (AÈ B)
a? zero or one of a (AÈ e)
a* zero or more of a A*
a+ one or more of a AA*

• e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$
General form of decimal number e.g. 9.12 or -9,8 (Europe)

Limitations of Regular Expressions

• Not all languages can be specified by regular
expressions

• Even some easy things like
– Palindromes
– Strings with equal number of 0’s and 1’s

• But also more complicated structures in
programming languages
– Matched parentheses
– Properly formed arithmetic expressions
– etc.

