CSE 311.: Foundations of Computing

Lecture 20: Regular expressions

OH NO! THE KILLER || BUT TO FIND THEM WED HAVE T0 SEARCH
MUST HAVE ROLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR
HER ON VACATION! || SOMETHING FORMATTED LIKE AN ADDRESS!

i

T KNOW REGUAR
EXPRESSIONS.

Recap: Structural Induction

Consider a recursively defined set S:
* Basis step: Some specific elements arein S
* Recursive step: Given some existing nhamed
elements in S some new objects constructed
from these named elements are also in S.

Recap: Structural Induction

Consider a recursively defined set S:
* Basis step: Some specific elements arein S
* Recursive step: Given some existing nhamed
elements in S some new objects constructed
from these named elements are also in S.

How to prove V x € S, P(x) is true:

» Base Case: Show that P(u) is true for all specific elements
u of S mentioned in the Basis step

* Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing hamed elements
mentioned in the Recursive step

* Inductive Step: Prove that P(w) holds for each of the new
elements w constructed in the Recursive step using the
named elements mentioned in the Inductive Hypothesis

 ConcludethatV x € S, P(x)

Rooted Binary Trees

* Basis: .
* Recursive step:

Is a rooted binary tree

Defining Functions on Rooted Binary Trees

size(¢)=1

size (/\) 1 + size(T,) + size(T,)

IIIIIIIIIIIII

height(e) =

helght(/\) =1 + max{height(T,), height(T,)}

..............

Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.

Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=2-1=1 so P(e) is true.

Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=2-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,.

4. Inductive Step: Goal: Prove P(/\).

N

Claim: For every rooted binary tree T, size(T) < 2heightM+1_1

1. Let P(T) be “size(T) < 2heieht(M+1-1” We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°*1-1=2-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,.

4. Inductive Step: Goal: Prove P(/\).

N

by IH for T, and T,
< height(Tq)+14 Yheight(T2)+1_1

< 2(2max(height(Tl),height(Tz))+1)_1

< 2(2height(w/\T))_1 < Dheight(?/\T 11

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.

Languages: Sets of Strings

* Sets of strings that satisfy special properties
are called languages. Examples:
— English sentences
— Syntactically correct Java/C/C++ programs
— >" = All strings over alphabet X
— Palindromes over X
— Binary strings that don’t have a O aftera 1
— Legal variable names. keywords in Java/C/C++
— Binary strings with an equal # of O’'s and 1's

Regular Expressions

Regular expressions over X
 Basis:
€ is a regular expression

@ is a regular expression
a is a regular expression for any a € X

* Recursive step:
— If A and B are regular expressions then so are:
AUB
AB
A*

Each Regular Expression is a “pattern”

€ matches the empty string
& does not match any string
a matches the one character string a

A U B matches all strings that either A matches or B
matches (or both)

AB matches all strings that have a first part that A
matches followed by a second part that B matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after another

Examples

001*

Examples

001*

{00, 001, 0011, 00111, ...}

Examples

Ooui1l)00ul0

(0*1*)*

Examples

Ooui1l)00ul0

{0000, 0010, 1000, 1010}

(0*1*)*

All binary strings

Examples

(OuU 1)*0110 (0 1)*

(00U 11)* (01010 U 10001) (O L 1)*

Examples

(OuU 1)*0110 (0 1)*

Binary strings that contain “0110”

(00U 11)* (01010 U 10001) (O L 1)*

Binary strings that begin with pairs of characters
followed by “01010” or “10001”

Lecture 20 Activity

* You will be assigned to breakout rooms. Please:
* Introduce yourself
* Choose someone to share screen, showing this PDF

Which of these is the language of 0*1*?

a) The set of all binary strings with any Os coming before all 1s

b) The set of all binary strings starting starting with O and ending with 1
c) The set of all binary strings

d) The set of all binary strings where every O is followed by a 1.

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login
with your UW identity

http://pollev.com/thomas311

Regular Expressions in Practice

« Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

* Legal variable names in Java are
(au---UzUAU---UZUS$U _)(aU---UzUAU---UZUSU _U1U:-U9)*
* Used in grep, a program that does pattern matching

searches in UNIX/LINUX

e Pattern matching using regular expressions is an essential
feature of PHP

* We can use regular expressions in programs to process
strings!

Regular Expressions in Java

 Pattern p = Pattern.compile("a*b");
* Matcher m = p.matcher("aaaaab");

* boolean b = m.matches();
[01] aOoral “startofstring $ end ofstring

[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB)
(al|b) aorb (A U B)
a? zero or one of a (AU Eg)
ax zero or more of a A*

a+ one or more of a AA*

* eg ~[\-+]1?2[0-91*(\.|\,)?[0-9]+%
General form of decimal number e.g. 9.12 or -9,8 (Europe)

Limitations of Regular Expressions

* Not all languages can be specified by regular
expressions

* Even some easy things like

— Palindromes
— Strings with equal number of O's and 1’s

 But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— efc.

