CSE 311: Foundations of Computing

Lecture 19: Structural induction

Image from @Hevesh5 on YouTube
Fibonacci Numbers

\[f_0 = 0 \quad \text{gcd}(a, b) = \text{gcd}(b, a - b) \]
\[f_1 = 1 \]
\[f_n = f_{n-1} + f_{n-2} \text{ for all } n \geq 2 \]

Last lecture: \(f_n < 2^n \) for all \(n \geq 0 \)

Similar: \(f_n \geq \frac{n}{2} - 1 \) for all \(n \geq 2 \)

Theorem: Suppose that Euclid’s Algorithm takes \(n \) steps for \(\text{gcd}(a, b) \) with \(a \geq b > 0 \). Then, \(a \geq f_{n+1} \).

This implies: \(n \leq 1 + 2\log_2 a \)

i.e., # of steps \(\leq 1 + \) twice the # of bits in \(a \).
Recap: Recursive Definitions of Sets

Recursive definition

- **Basis step:** Some specific elements are in S
- **Recursive step:** Given some existing named elements in S, some new objects constructed from these named elements are also in S.
- **Exclusion rule:** Every element in S follows from basis steps and a finite number of recursive steps

Example: The set Σ^* of **strings** over the alphabet Σ is defined by

- **Basis:** $\varepsilon \in \Sigma^*$ (ε is the empty string)
- **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Example of function for recursively defined set: **String length**

- $\text{len}(\varepsilon) = 0$
- $\text{len}(wa) = 1 + \text{len}(w)$ for $w \in \Sigma^*$, $a \in \Sigma$
Rooted Binary Trees

• **Basis:** is a rooted binary tree

• **Recursive step:**

\[\text{Tree}(L_1, R_1) \quad \text{Tree}(L_2, R_2) \]

If \(T_1 \) and \(T_2 \) are rooted binary trees,

\[\text{Tree} \left(\text{Tree} \left(L_1, R_1 \right), \text{Tree} \left(L_2, R_2 \right) \right) \]

then also is a rooted binary tree.
Defining Functions on Rooted Binary Trees

• $\text{size}(\bullet) = 1$

• $\text{size} \left(\begin{array}{c} T_1 \\ \bullet \\ T_2 \end{array} \right) = 1 + \text{size}(T_1) + \text{size}(T_2)$

• $\text{height}(\bullet) = 0$

• $\text{height} \left(\begin{array}{c} T_1 \\ \bullet \\ T_2 \end{array} \right) = 1 + \max\{\text{height}(T_1), \text{height}(T_2)\}$
Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the *Basis step*.

Inductive Hypothesis: Assume that P is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*.

Inductive Step: Prove that $P(w)$ holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the *Inductive Hypothesis*.

Conclude that $\forall x \in S, P(x)$.
Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that $P(w)$ holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$
Using Structural Induction

• Let S be given by...
 – **Basis:** $6 \in S$; $15 \in S$;
 – **Recursive:** if $x, y \in S$ then $x + y \in S$.

Claim: Every element of S is divisible by 3.
Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be “$3 \mid x$”. We prove that $P(x)$ is true for all $x \in S$ by structural induction.

 Basis: $6 \in S$; $15 \in S$;
 Recursive: if $x, y \in S$ then $x + y \in S$
Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be “$3 \mid x$”. We prove that $P(x)$ is true for all $x \in S$ by structural induction.

2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true.

Basis: $6 \in S$; $15 \in S$;

Recursive: if $x, y \in S$ then $x + y \in S$
Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be “$3 \vert x$”. We prove that $P(x)$ is true for all $x \in S$ by structural induction.

2. Base Case: $3 \vert 6$ and $3 \vert 15$ so $P(6)$ and $P(15)$ are true

3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x,y \in S$

4. Inductive Step: **Goal:** Show $P(x+y)$

 Basis: $6 \in S$; $15 \in S$;

 Recursive: if $x,y \in S$ then $x + y \in S$
Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be “$3 \mid x$”. We prove that $P(x)$ is true for all $x \in S$ by structural induction.

2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true.

3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x, y \in S$.

4. Inductive Step: Goal: Show $P(x+y)$.

 Since $P(x)$ is true, $3 \mid x$ and so $x = 3m$ for some integer m and since $P(y)$ is true, $3 \mid y$ and so $y = 3n$ for some integer n. Therefore $x + y = 3m + 3n = 3(m+n)$ and thus $3 \mid (x+y)$.

 Hence $P(x+y)$ is true.

5. Therefore by induction $3 \mid x$ for all $x \in S$.

Basis: $6 \in S$; $15 \in S$;

Recursive: if $x, y \in S$ then $x + y \in S$.
Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of structural induction:

Recursive definition of \mathbb{N}

Basis: $0 \in \mathbb{N}$

Recursive step: If $k \in \mathbb{N}$ then $k + 1 \in \mathbb{N}$

Structural induction follows from ordinary induction:

Define $Q(n)$ to be “for all $x \in S$ that can be constructed in at most n recursive steps, $P(x)$ is true.”
You will be assigned to **breakout rooms**. Please:

- Introduce yourself
- Choose someone to share their screen, showing this PDF
- Recall that we defined recursively
 - **Strings.** Basis: $\varepsilon \in \Sigma^*$ Recursive: If $w \in \Sigma^*$ and $a \in \Sigma$ then $wa \in \Sigma^*$
 - **Concatenation of strings.** Basis: $x \cdot \varepsilon = x$ for Σ^*
 Recursive: $x \cdot wa = (x \cdot w)a$ for $x \in \Sigma^*$, $a \in \Sigma$
- Let $P(y)$ be ``$\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$ for all $x \in \Sigma$’’
- We want to prove $P(y)$ for all $y \in \Sigma^*$ by **structural induction**. Please complete the proof:

 Base Case: Let $x \in \Sigma^*$ arbitrary. Then $\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + 0 = \text{len}(x) + \text{len}(\varepsilon)$. Hence $P(\varepsilon)$.

 Inductive Hypothesis: Suppose $P(w)$ for an arbitrary $w \in \Sigma^*$.

 Inductive Step: ...

Fill out the poll everywhere for **Activity Credit**!
Go to pollev.com/philipmg and login with your UW identity.
Recall that we defined recursively:

- **Strings.** Basis: \(\varepsilon \in \Sigma^* \) Recursive: If \(w \in \Sigma^* \) and \(a \in \Sigma \) then \(wa \in \Sigma^* \)
- **Concatenation of strings.** Basis: \(x \cdot \varepsilon = x \) for \(\Sigma^* \)
 Recursive: \(x \cdot wa = (x \cdot w)a \) for \(x \in \Sigma^* \), \(a \in \Sigma \)

Let \(P(y) \) be "\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \)"

We want to prove \(P(y) \) for all \(y \in \Sigma^* \) by **structural induction**. Please complete the proof:

Base Case: Let \(x \in \Sigma^* \) arbitrary. Then \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + 0 = \text{len}(x) + \text{len}(\varepsilon) \). Hence \(P(\varepsilon) \).

Inductive Hypothesis: Suppose \(P(w) \) for an arbitrary \(w \in \Sigma^* \).

Inductive Step: Let \(a \in \Sigma \). Let \(x \in \Sigma^* \). Then \(\text{len}(x \cdot wa) = \text{len}((x \cdot w)a) \) by defn of \(\cdot \)

\[
= \text{len}(x \cdot w) + 1 \quad \text{by defn of len}
= \text{len}(x) + \text{len}(w) + 1 \quad \text{by I.H.}
= \text{len}(x) + \text{len}(wa) \quad \text{by defn of len}
\]

Therefore \(\text{len}(x \cdot wa) = \text{len}(x) + \text{len}(wa) \) for all \(x \in \Sigma^* \), so \(P(wa) \) is true.

So, by induction \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\bullet) = 1$, $\text{height}(\bullet) = 0$, and $2^{0+1} - 1 = 2^1 - 1 = 1$ so $P(\bullet)$ is true.
Claim: For every rooted binary tree \(T \), \(\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1 \)

1. Let \(P(T) \) be “\(\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1 \)”. We prove \(P(T) \) for all rooted binary trees \(T \) by structural induction.

2. Base Case: \(\text{size}(\bullet) = 1 \), \(\text{height}(\bullet) = 0 \), and \(2^{0+1} - 1 = 2^1 - 1 = 1 \) so \(P(\bullet) \) is true.

3. Inductive Hypothesis: Suppose that \(P(T_1) \) and \(P(T_2) \) are true for some rooted binary trees \(T_1 \) and \(T_2 \).

4. Inductive Step: Goal: Prove \(P(\text{rooted binary tree}) \).
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)}+1-1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\bullet)=1$, $\text{height}(\bullet)=0$, and $2^{0+1}-1=2^1-1=1$ so $P(\bullet)$ is true.

3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2.

4. Inductive Step:

 Goal: Prove $P(T)$.

 By defn, $\text{size}(T) = 1 + \text{size}(T_1) + \text{size}(T_2)$

 $\leq 1 + 2^{\text{height}(T_1)+1-1} + 2^{\text{height}(T_2)+1-1}$

 by IH for T_1 and T_2

 $\leq 2^{\text{height}(T_1)+1} + 2^{\text{height}(T_2)+1-1}$

 $\leq 2(2^{\text{max}(\text{height}(T_1),\text{height}(T_2))}+1)-1$

 $\leq 2(2^{\text{height}(T)})-1 \leq 2^{\text{height}(T)+1} - 1$

 which is what we wanted to show.

5. So, the $P(T)$ is true for all rooted bin. trees by structural induction.