
CSE 311: Foundations of Computing

Lecture 15:  The Euclidean algorithm and 

applications



Recap from last lecture

• An integer 𝑝 > 2 is prime if the only positive factors 

are 1 and 𝑝
• A prime factorization for an integer 𝑛 > 1 is of the 

form 𝑛 = 𝑝1 ⋅ … ⋅ 𝑝𝑘 where 𝑝1, … , 𝑝𝑘 are prime 

numbers.

• Each integer 𝑛 > 1 as a unique prime factorization.

• The greatest common divisor gcd(𝑎, 𝑏) is the largest 

integer 𝑑 with 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏.

• Important fact for today: gcd 𝑎, 𝑏 = gcd(𝑏, 𝑎 % 𝑏)



Another simple GCD fact

If a is a positive integer,  gcd(a,0) = a.



Euclid’s Algorithm

gcd(a, b) = gcd(b, a mod b), gcd(a,0)=a

int gcd(int a, int b){ /* a >= b, b >= 0 */
if (b == 0) {

return a;
}
else {

return gcd(b, a % b);
}

Example: GCD(660, 126)



Euclid’s Algorithm

gcd(660,126) =

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎 mod 𝑏 to reduce 

numbers until you get gcd(𝑔, 0) = 𝑔.

gcd(660,126) 



Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)
= gcd(30, 126 % 30) = gcd(30, 6)
= gcd(6, 30 % 6) = gcd(6, 0)
= 6

gcd(660,126) 

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎 % 𝑏 to reduce 

numbers until you get gcd(𝑔, 0) = 𝑔.



Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)
= gcd(30, 126 % 30) = gcd(30, 6)
= gcd(6, 30 % 6) = gcd(6, 0)
= 6

gcd(660,126) 

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎 mod 𝑏 to reduce 

numbers until you get gcd(𝑔, 0) = 𝑔.

660 = 5 * 126 + 30
126 = 4 *   30 +   6
30 = 5 *     6 +   0

In tableau form:



Bézout’s theorem

If a and b are positive integers, then there exist 
integers s and t such that 

gcd(a,b) = sa + tb.

Proof is algorithmic: via the Extended Euclidean algorithm



Extended Euclidean algorithm

• Method: extGCD 𝑎, 𝑏 → (𝑔, 𝑠, 𝑡)

• Input: Integers 𝑎 ≥ 𝑏 ≥ 0

• Output: Integers 𝑔, 𝑠, 𝑡 s.t. 𝑔 = gcd 𝑎, 𝑏 = 𝑠 ⋅ 𝑎 + 𝑡 ⋅ 𝑏

1. IF 𝑏 == 0 THEN return (𝑎, 1,0)

2. 𝑔, 𝑠, 𝑡 ≔ extGCD(𝑏, 𝑎 % 𝑏)

3. Write 𝑎 = 𝑞𝑏 + (𝑎 % 𝑏) with 𝑞 ∈ ℤ

4. Return (𝑔, 𝑡, 𝑠 − 𝑡𝑞)

// 𝑎 = gcd 𝑎,0 = 1 ⋅ 𝑎 + 0 ⋅ 0

// 𝑔 = gcd 𝑏, 𝑎 % 𝑏 = gcd 𝑎, 𝑏
// 𝑔 = 𝑠 ⋅ 𝑏 + 𝑡 ⋅ 𝑎 % 𝑏
// = 𝑠 ⋅ 𝑏 + 𝑡 ⋅ 𝑎 − 𝑞𝑏
// = 𝑡 ⋅ 𝑎 + 𝑠 − 𝑡𝑞 ⋅ 𝑏



Extended Euclidean algorithm

• Example: Find 𝑠, 𝑡 such that gcd 31,16 = 𝑠 ⋅ 31 + 𝑡 ⋅ 16
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Hence gcd 31,16 = 1
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Multiplicative inverse mod𝑚

Suppose GCD 𝑎,𝑚 = 1

By Bézout’s Theorem, there exist integers 𝑠 and 𝑡

such that 𝑠𝑎 + 𝑡𝑚 = 1.

𝑠 %𝑚 is the multiplicative inverse of 𝑎:

1 = 𝑠𝑎 + 𝑡𝑚 % 𝑚 = 𝑠𝑎 % 𝑚
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By Bézout’s Theorem, there exist integers 𝑠 and 𝑡

such that 𝑠𝑎 + 𝑡𝑚 = 1.

𝑠 %𝑚 is the multiplicative inverse of 𝑎:

1 = 𝑠𝑎 + 𝑡𝑚 % 𝑚 = 𝑠𝑎 % 𝑚



Example

Solve:  7𝑥 ≡ 1 (mod 26)



Example

Solve:  7𝑥 ≡ 1 (mod 26)

gcd(26, 7) = gcd(7, 5) = gcd(5, 2) = gcd(2, 1) = 1

26 = 7 ∗ 3 + 5 5 = 26– 7 ∗ 3

7 = 5 ∗ 1 + 2 2 = 7– 5 ∗ 1

5 = 2 ∗ 2 + 1 1 = 5– 2 ∗ 2

1 = 5 – 2 ∗ (7 – 5 ∗ 1)

= (–7) ∗ 2 + 3 ∗ 5

= –7 ∗ 2 + 3 ∗ (26 – 7 ∗ 3)
= −11 ∗ 7 + 3 ∗ 26

Now (−11) mod 26 = 15.   So, 𝑥 = 15+ 26𝑘 for 𝑘 ∈ ℤ.

Multiplicative inverse of 7 mod 26



Example of a more general equation

Now solve:  7𝑦 ≡ 3 (mod 26)

We already computed that 15 is the multiplicative 

inverse of 7 modulo 26:

That is,  7 ∙ 15 ≡ 1 (mod 26)

By the multiplicative property of mod we have

7 ∙ 15 ∙ 3 ≡ 3 (mod 26)

So any 𝑦 ≡ 15 ∙ 3 mod 26 is a solution. 

That is, 𝑦 = 19 + 26𝑘 for any integer 𝑘 is a solution.



Lecture 15 Activity

Fill out the poll everywhere for Activity Credit!

Go to pollev.com/philipmg and login with your UW 

identity

You will be assigned to breakout rooms. Please:

• Introduce yourself

• Choose someone to share their screen, showing this PDF

• Discuss the following questions: 

1. If you run the extended Euclidean algorithm for (51,23) it 

will return that gcd 51,23 = 1 = −9 ⋅ 51+ 20 ⋅ 23. 

What is this telling you about the multiplicative inverse of 

51 modulo 23.

2. If you run the extended Euclidean algorithm for (51,24) it 

will return that gcd 51,24 = 3 = 1 ⋅ 51+ (−2) ⋅ 24. 

What is this telling you about the multiplicative inverse of 

51 modulo 24.

3. What is the set of integers that do not have a 

multiplicative inverse modulo 10?

http://pollev.com/philipmg


Lecture 15 Activity

Fill out the poll everywhere for Activity Credit!

Go to pollev.com/philipmg and login with your UW 

identity

1. If you run the extended Euclidean algorithm for (51,23) it 

will return that gcd 51,23 = 1 = −9 ⋅ 51+ 20 ⋅ 23. 

What is this telling you about the multiplicative inverse of 

51 modulo 23.

Solution: −9 + 23 = 14
2. If you run the extended Euclidean algorithm for (51,24) it 

will return that gcd 51,24 = 3 = 1 ⋅ 51+ (−2) ⋅ 24. 

What is this telling you about the multiplicative inverse of 

51 modulo 24.

Solution: There is none.

3. What is the set of integers that do not have a 

multiplicative inverse modulo 10?

Solution: 0 + 10𝑥, 2 + 20𝑥, 5 + 10𝑥, 𝑥 ∈ ℤ

http://pollev.com/philipmg


Math mod a prime is especially nice

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

gcd(𝑎,𝑚) = 1 if 𝑚 is prime and 0 < 𝑎 < 𝑚 so 

can always solve these equations mod a prime.

mod 7



Modular Exponentiation % 7

X 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

a a1 a2 a3 a4 a5 a6

1

2

3

4

5

6



Exponentiation

• Compute 7836581453

• Compute 7836581453 % 104729

• Output is small

– need to keep intermediate results small



Repeated Squaring – small and fast

Since 𝑎 %𝑚 ≡ 𝑎 mod 𝑚 and 𝑏 % 𝑚 ≡ 𝑏 mod 𝑚

we have 𝑎𝑏 %𝑚 = 𝑎 %𝑚 𝑏 % 𝑚 %𝑚

So            𝑎2%𝑚 = 𝑎 %𝑚 2 %𝑚

and          𝑎4%𝑚 = 𝑎2 %𝑚 2 %𝑚

and          𝑎8%𝑚 = 𝑎4 %𝑚 2 %𝑚

and          𝑎16%𝑚 = 𝑎8%𝑚 2 %𝑚

and          𝑎32%𝑚 = 𝑎16%𝑚 2 %𝑚

Can compute 𝑎𝑘 %𝑚 for 𝑘 = 2𝑖 in only 𝑖 steps

What if 𝑘 is not a power of 2?



Fast Exponentiation Algorithm 

81453 in binary is 10011111000101101

81453 = 216 + 213 + 212 + 211 + 210 + 29 + 25 + 23 + 22 + 20

The fast exponentiation algorithm computes 

𝑎𝑘 %𝑚 using ≤ 2log 𝑘 multiplications %𝑚

a81453 = a216
· a213

· a212
· a211

· a210
· a29

· a25
· a23

· a22
· a20

a81453 % m= 

(…(((((a216
% m ·

a213
% m ) % m · 

a212
% m) % m · 

a211
% m) % m · 

a210
% m) % m · 

a29
% m) % m · 

a25
% m) % m · 

a23
% m) % m · 

a22
% m) % m · 

a20
% m)  % m 



Fast Exponentiation:  𝑎𝑘 %𝑚 for all 𝑘

𝑎2𝑗%𝑚 = 𝑎𝑗 %𝑚
2
%𝑚

𝑎2𝑗+1%𝑚 = (𝑎%𝑚) ∙ 𝑎2𝑗%𝑚 %𝑚

Another way....



Fast Exponentiation

public static long FastModExp(long a, long k, long modulus) {
long result = 1;
long temp;

if (k > 0) {
if ((k % 2) == 0) {

temp = FastModExp(a,k/2,modulus);
result = (temp * temp) % modulus;

}
else {

temp = FastModExp(a,k-1,modulus);
result = (a * temp) % modulus;

}
}
return result;

}

𝑎2𝑗%𝑚 = 𝑎𝑗 %𝑚
2
%𝑚

𝑎2𝑗+1%𝑚 = (𝑎 %𝑚) ∙ 𝑎2𝑗%𝑚 %𝑚



Using Fast Modular Exponentiation

• Your e-commerce web transactions use SSL 

(Secure Socket Layer) based on RSA encryption

• RSA

– Vendor chooses random 512-bit or 1024-bit primes 𝒑,𝒒
and 512/1024-bit exponent 𝒆.  Computes 𝒎 = 𝒑 ⋅ 𝒒

– Vendor broadcasts (𝒎, 𝒆)

– To send 𝒂 to vendor, you compute 𝑪 = 𝒂𝒆 %𝒎 using 

fast modular exponentiation and send 𝑪 to the vendor.

– Using secret 𝒑, 𝒒 the vendor computes 𝒅 that is the 

multiplicative inverse of 𝒆 mod (𝒑 − 𝟏)(𝒒 − 𝟏).

– Vendor computes 𝑪𝒅 %𝒎 using fast modular 

exponentiation.

– Fact:   𝒂 = 𝑪𝒅 %𝒎 for 𝟎 < 𝒂 < 𝒎 unless 𝒑|𝒂 or 𝒒|𝒂


