Lecture 13: Number theory & modular arithmetic
Modular Arithmetic

• Arithmetic over a finite domain

• In computing, almost all computations are over a finite domain
Number Theory (and applications to computing)

• Branch of Mathematics with direct relevance to computing

• Many significant applications
 – Cryptography
 – Hashing
 – Security

• Important tool set
public class Test {
 final static int SEC_IN_YEAR = 364*24*60*60*100;
 public static void main(String args[]) {
 System.out.println(
 "I will be alive for at least " +
 SEC_IN_YEAR * 101 + " seconds."
);
 }
}
public class Test {
 final static int SEC_IN_YEAR = 364*24*60*60*100;
 public static void main(String args[]) {
 System.out.println(
 "I will be alive for at least " +
 SEC_IN_YEAR * 101 + " seconds."
);
 }
}

----jGRASP exec: java Test
I will be alive for at least -186619904 seconds.

----jGRASP: operation complete.
Divisibility

Definition: “a divides b”

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$:

$a \mid b \iff \exists k \in \mathbb{Z} (b = ka)$

Check Your Understanding. Which of the following are true?

$\begin{array}{ccc}
5 | 1 & 25 | 5 & 5 | 0 \\
1 | 5 & 5 | 25 & 0 | 5 \\
3 | 2 & 2 | 3 & 0 | 5
\end{array}$
Divisibility

Definition: “a divides b”

For \(a \in \mathbb{Z}, b \in \mathbb{Z} \) with \(a \neq 0 \):

\[
a \mid b \iff \exists k \in \mathbb{Z} \ (b = ka)
\]

Check Your Understanding. Which of the following are true?

\[
\begin{align*}
5 \mid 1 & \quad \text{iff } \exists k. \ 1 = 5k \\
25 \mid 5 & \quad \text{iff } \exists k. \ 5 = 25k \\
5 \mid 0 & \quad \exists k. \ 0 = 5k \\
3 \mid 2 & \quad \text{iff } \exists k. \ 2 = 3k \\
1 \mid 5 & \quad \text{iff } \exists k. \ 5 = 1k \\
5 \mid 25 & \quad \text{iff } \exists k. \ 25 = 5k \\
0 \mid 5 & \quad \text{iff } \exists k. \ 5 = 0k \\
2 \mid 3 & \quad \text{iff } \exists k. \ 3 = 2k
\end{align*}
\]
Division Theorem

For \(a \in \mathbb{Z}, d \in \mathbb{Z} \) with \(d > 0 \) there exist unique integers \(q, r \) with \(0 \leq r < d \) such that \(a = dq + r \).

To put it another way, if we divide \(d \) into \(a \), we get a unique quotient \(q = a \div d \) and non-negative remainder \(r = a \% d \).

Note: \(r \geq 0 \) even if \(a < 0 \). Not quite the same as in Java.
To put it another way, if we divide d into a, we get a unique quotient $q = a \, \text{div} \, d$ and non-negative remainder $r = a \, \% \, d$.

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d > 0$ there exist unique integers q, r with $0 \leq r < d$ such that $a = dq + r$.

Note: $r \geq 0$ even if $a < 0$. Not quite the same as in Java.
Modular Arithmetic

Definition: “a is congruent to b modulo m”

For $a, b, m \in \mathbb{Z}$ with $m > 0$

$$a \equiv b \pmod{m} \iff m \mid (a - b)$$

Check Your Understanding. What do each of these mean? When are they true?

- $x \equiv 0 \pmod{2}$
- $x \equiv 0$
- $-1 \equiv 19 \pmod{5}$
- $y \equiv 2 \pmod{7}$
Modular Arithmetic

Definition: “a is congruent to b modulo m”

For \(a, b, m \in \mathbb{Z} \) with \(m > 0 \)

\[a \equiv b \pmod{m} \iff m \mid (a - b) \]

Check Your Understanding. What do each of these mean? When are they true?

\[x \equiv 0 \pmod{2} \]

This statement is the same as saying “x is even”; so, any x that is even (including negative even numbers) will work.

\[-1 \equiv 19 \pmod{5} \]

\[5 \mid (-1 - 19) = -20 \iff \exists k. \ -20 = 5k \]

This statement is true. \(19 - (-1) = 20 \) which is divisible by 5.

\[y \equiv 2 \pmod{7} \]

\[7 \mid y - 2 \iff \exists k. \ y - 2 = 7k \]

This statement is true for \(y \) in \{ ..., -12, -5, 2, 9, 16, ... \}. In other words, all y of the form \(2 + 7k \) for k an integer.
The $\% m$ function vs the $\equiv (\text{mod } m)$ predicate

- $\%$ is a function (operator) with two arguments. The result is an integer.
- $\equiv \ldots (\text{mod } m)$ is a predicate:
 - "a is equivalent, modulo m, to b"
 - "a is equivalent to b (modulo m)"
 - $a \equiv b \pmod{m}$
Arithmetic, mod 7

1 + 5 = 4
2 + 4 ≡ 4 \text{ (mod 7)}
Modular Arithmetic: A Property

Let \(a, b, m \) be integers with \(m > 0 \).
Then, \(a \equiv b \pmod{m} \) if and only if \(a \% m = b \% m \).

Suppose that \(a \equiv b \pmod{m} \).

Suppose that \(a \% m = b \% m \).
Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.
Then, $a \equiv b \pmod{m}$ if and only if $a \% m = b \% m$.

Suppose that $a \equiv b \pmod{m}$.
Then, $m \mid (a - b)$ by definition of congruence.
So, $a - b = km$ for some integer k by definition of divides.
Therefore, $a = b + km$.

Taking both sides modulo m we get:
$$a \% m = (b + km) \% m = b \% m.$$

Suppose that $a \% m = b \% m$.
By the division theorem, $a = mq + (a \% m)$ and $b = ms + (b \% m)$ for some integers q, s.
Then, $a - b = (mq + (a \% m)) - (ms + (b \% m))$
$$= m(q - s) + (a \% m - b \% m)$$
$$= m(q - s) \text{ since } a \% m = b \% m$$
Therefore, $m \mid (a - b)$ and so $a \equiv b \pmod{m}$.
The $\% m$ function vs the $\equiv \pmod{m}$ predicate

- What we have just shown
 - The $\% m$ function takes any $a \in \mathbb{Z}$ and maps it to a remainder $a \% m \in \{0,1,\ldots,m-1\}$.

 - Imagine grouping together all integers that have the same value of the $\% m$ function
 That is, the same remainder in $\{0,1,\ldots,m-1\}$.

 - The $\equiv \pmod{m}$ predicate compares $a, b \in \mathbb{Z}$. It is true if and only if the $\% m$ function has the same value on a and on b.
 That is, a and b are in the same group.
Let m be a positive integer. If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.
Let m be a positive integer. If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.

Suppose that $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$. Then, by the previous property, we have $a \% m = b \% m$ and $b \% m = c \% m$.

Putting these together, we have $a \% m = c \% m$, which says that $a \equiv c \pmod{m}$, by definition.

So “≡” behaves like “=“ in that sense. And that is not the only similarity...
Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$.
Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$.

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that $a - b = km$, and some j such that $c - d = jm$.

Adding the equations together gives us $(a + c) - (b + d) = m(k + j)$. Now, re-applying the definition of congruence gives us $a + c \equiv b + d \pmod{m}$.
Let m be a positive integer. If $a \equiv b \ (\text{mod} \ m)$ and $c \equiv d \ (\text{mod} \ m)$, then $ac \equiv bd \ (\text{mod} \ m)$.
Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$.

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that $a - b = km$, and some j such that $c - d = jm$.

Then, $a = km + b$ and $c = jm + d$. Multiplying both together gives us $ac = (km + b)(jm + d) = k jm^2 + kjm + km^2 + kmd + bjm + bd$.

Re-arranging gives us $ac - bd = m(kjm + kd + bj)$. Using the definition of congruence gives us $ac \equiv bd \pmod{m}$.

Modular Arithmetic: Multiplication Property
Lecture 13 Activity

You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share their screen, showing this PDF
• Consider the statement:

For all $a, b, c, m \in \mathbb{Z}, m > 0$ one has
\[
a \equiv b \pmod{m} \rightarrow a + c \equiv b + c \pmod{m}.
\]

• Discuss what the statement means.
• Prove the statement.

Fill out the poll everywhere for Activity Credit!
Go to pollev.com/philipmg and login with your UW identity

Definition: “a is congruent to b modulo m”

For $a, b, m \in \mathbb{Z}$ with $m > 0$
\[
a \equiv b \pmod{m} \iff m \mid (a - b)
\]

Definition: “a divides b”

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$:
\[
a \mid b \iff \exists k \in \mathbb{Z} \ (b = ka)
\]
Lecture 13 Activity

You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share their screen, showing this PDF
• Consider the statement:

For all $a, b, c, m \in \mathbb{Z}, m > 0$ one has
$$a \equiv b \pmod{m} \rightarrow a + c \equiv b + c \pmod{m}.$$

Proof.
Let $a, b, c \in \mathbb{Z}$ be arbitrary and let $m > 0$.
Assume that $a \equiv b \pmod{m}$.
Then $m \mid a - b$ and hence there is an integer x with $mx = a - b$.
Then $(a + c) - (b + c) = a - b = mx$ and so $m \mid (a + c) - (b + c)$.
Then $a + c \equiv b + c \pmod{m}$ by definition of mod.

Definition: “a is congruent to b modulo m”

For $a, b, m \in \mathbb{Z}$ with $m > 0$
$$a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$$

Definition: “a divides b”

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$:
$$a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$$
Example

Let n be an integer.
Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Let’s start by looking at a small example:

- $0^2 = 0 \equiv 0 \pmod{4}$
- $1^2 = 1 \equiv 1 \pmod{4}$
- $2^2 = 4 \equiv 0 \pmod{4}$
- $3^2 = 9 \equiv 1 \pmod{4}$
- $4^2 = 16 \equiv 0 \pmod{4}$
Example

Let n be an integer.
Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Case 1 (n is even):

Let’s start by looking at a small example:

<table>
<thead>
<tr>
<th>$n^2 \pmod{4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 $\pmod{4}$</td>
</tr>
<tr>
<td>1 $\pmod{4}$</td>
</tr>
</tbody>
</table>

It looks like

$n \equiv 0 \pmod{2} \rightarrow n^2 \equiv 0 \pmod{4}$, and
$n \equiv 1 \pmod{2} \rightarrow n^2 \equiv 1 \pmod{4}$.
Example

Let n be an integer.
Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Let’s start by looking at a small example:

\[
\begin{align*}
0^2 &= 0 \equiv 0 \pmod{4} \\
1^2 &= 1 \equiv 1 \pmod{4} \\
2^2 &= 4 \equiv 0 \pmod{4} \\
3^2 &= 9 \equiv 1 \pmod{4} \\
4^2 &= 16 \equiv 0 \pmod{4}
\end{align*}
\]

Case 1 (n is even):
Suppose n is even.
Then, $n = 2k$ for some integer k.
So, $n^2 = (2k)^2 = 4k^2$.
So, by definition of congruence, we have $n^2 \equiv 0 \pmod{4}$.

It looks like
\[
\begin{align*}
n \equiv 0 \pmod{2} &\rightarrow n^2 \equiv 0 \pmod{4}, \text{ and} \\
n \equiv 1 \pmod{2} &\rightarrow n^2 \equiv 1 \pmod{4}.
\end{align*}
\]
Let n be an integer.
Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Case 1 (n is even): Done.

Case 2 (n is odd):

Let's start by looking at a small example:

\[
\begin{align*}
0^2 &= 0 \equiv 0 \pmod{4} \\
1^2 &= 1 \equiv 1 \pmod{4} \\
2^2 &= 4 \equiv 0 \pmod{4} \\
3^2 &= 9 \equiv 1 \pmod{4} \\
4^2 &= 16 \equiv 0 \pmod{4}
\end{align*}
\]

It looks like
\[
\begin{align*}
n \equiv 0 \pmod{2} &\rightarrow n^2 \equiv 0 \pmod{4}, \text{ and} \\
n \equiv 1 \pmod{2} &\rightarrow n^2 \equiv 1 \pmod{4}.
\end{align*}
\]
Example

Let n be an integer.
Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Let’s start by looking at a small example:

<table>
<thead>
<tr>
<th>n^2</th>
<th>Mod 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^2</td>
<td>0</td>
</tr>
<tr>
<td>1^2</td>
<td>1</td>
</tr>
<tr>
<td>2^2</td>
<td>0</td>
</tr>
<tr>
<td>3^2</td>
<td>1</td>
</tr>
<tr>
<td>4^2</td>
<td>0</td>
</tr>
</tbody>
</table>

It looks like $n \equiv 0 \pmod{2} \rightarrow n^2 \equiv 0 \pmod{4}$, and $n \equiv 1 \pmod{2} \rightarrow n^2 \equiv 1 \pmod{4}$.

Case 1 (n is even): Done.

Case 2 (n is odd):
Suppose n is odd.
Then, $n = 2k + 1$ for some integer k.
So, $n^2 = (2k + 1)^2$

$$= 4k^2 + 4k + 1$$

$$= 4(k^2 + k) + 1.$$

So, by the earlier property of mod, we have $n^2 \equiv 1 \pmod{4}$.

Result follows by “proof by cases”: n is either even or not even (odd)
n-bit Unsigned Integer Representation

- Represent integer x as sum of powers of 2:

 If $\sum_{i=0}^{n-1} b_i 2^i$ where each $b_i \in \{0,1\}$

 then representation is $b_{n-1}...b_2 b_1 b_0$

 $99 = 64 + 32 + 2 + 1$
 $18 = 16 + 2$

- For $n = 8$:

 99: 0110 0011
 18: 0001 0010
Sign-Magnitude Integer Representation

\[n \]-bit signed integers

Suppose that \(-2^{n-1} < x < 2^{n-1}\)

First bit as the sign, \(n - 1\) bits for the value

\[99 = 64 + 32 + 2 + 1\]
\[18 = 16 + 2\]

For \(n = 8\):

\[99: \ 0110 \ 0011\]
\[-18: \ 1001 \ 0010\]

Any problems with this representation?
Two’s Complement Representation

n bit signed integers, first bit will still be the sign bit

Suppose that $0 \leq x < 2^{n-1}$, x is represented by the binary representation of x

Suppose that $0 \leq x \leq 2^{n-1}$, $-x$ is represented by the binary representation of $2^n - x$

Key property: Twos complement representation of any number y is equivalent to $y, \text{mod } 2^n$ so arithmetic works $\text{mod } 2^n$

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For $n = 8$:
99: 0110 0011
-18: 1110 1110
Sign-Magnitude vs. Two’s Complement

<table>
<thead>
<tr>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>1110</td>
<td>1101</td>
<td>1100</td>
<td>1011</td>
<td>1010</td>
<td>1001</td>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Sign-bit

<table>
<thead>
<tr>
<th>-8</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1001</td>
<td>1010</td>
<td>1011</td>
<td>1100</td>
<td>1101</td>
<td>1110</td>
<td>1111</td>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
</tr>
</tbody>
</table>

Two’s complement
Two’s Complement Representation

• For $0 < x \leq 2^{n-1}$, $-x$ is represented by the binary representation of $2^n - x$

 – That is, the two’s complement representation of any number y has the same value as y modulo 2^n.

• To compute this: Flip the bits of x then add 1:

 – All 1’s string is $2^n - 1$, so

 Flip the bits of $x \equiv$ replace x by $2^n - 1 - x$

 Then add 1 to get $2^n - x$
Basic Applications of mod

- Hashing
- Pseudo random number generation
- Simple cipher
Hashing

Scenario:

Map a small number of data values from a large domain \(\{0, 1, \ldots, M - 1\} \) ...
...into a small set of locations \(\{0, 1, \ldots, n - 1\} \) so one can quickly check if some value is present

- \(\text{hash}(x) = x \mod p \) for \(p \) a prime close to \(n \)
- or \(\text{hash}(x) = (ax + b) \mod p \)

- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur
Pseudo-Random Number Generation

Linear Congruential method

\[x_{n+1} = (ax_n + c) \mod m \]

Choose random \(x_0, a, c, m \) and produce a long sequence of \(x_n \)'s
Simple Ciphers

• **Caesar cipher**, $A = 1$, $B = 2$, …
 - HELLO WORLD

• **Shift cipher**
 - $f(p) = (p + k) \ % \ 26$
 - $f^{-1}(p) = (p - k) \ % \ 26$

• **More general**
 - $f(p) = (ap + b) \ % \ 26$