CSE 311: Foundations of Computing

Lecture 5: CNF and Predicate Logic

Recap from last class: DNF

- A propositional logic formula is in disjunctive normal form (DNF), if it is an OR of AND terms of literals (i.e. variables or negated variables)
- Example for DNF: $(q \land \neg r \land s) \lor (\neg q \land \neg r) \lor (\neg r \land \neg s)$
- Every propositional formula has an equivalent DNF

 A propositional logic formula is in conjunctive normal form (CNF), if it is an AND of OR terms of literals

Example for CNF: $(q \lor \neg r \lor s) \land (\neg q \lor \neg r) \land (\neg r \lor \neg s)$

- Every propositional logic formula has an equivalent CNF. Again that CNF is not necessarily unique (but the full CNF is)
- Other names for CNF:
 - Product-of-Sums Canonical Form
 - Maxterm Expansion

Construction of Conjunctive Normal Form

Useful Facts:

- We know $F \equiv \neg(\neg F)$
- We know how to get a **DNF** for $\neg F$

Propositional Logic

"If you take the high road and I take the low road then I'll arrive in Scotland before you."

• Predicate Logic

"All positive integers x, y, and z satisfy $x^3 + y^3 \neq z^3$."

Propositional Logic

 Allows us to analyze complex propositions in terms of their simpler constituent parts (a.k.a. atomic propositions) joined by connectives

Predicate Logic

 Lets us analyze them at a deeper level by expressing how those propositions depend on the objects they are talking about

Adds two key notions to propositional logic

- Predicates
- Quantifiers

Predicate

- A function that returns a truth value, e.g.,

Cat(x) ::= "x is a cat" Prime(x) ::= "x is prime" HasTaken(x, y) ::= "student x has taken course y" LessThan(x, y) ::= "x < y" Sum(x, y, z) ::= "x + y = z" GreaterThan5(x) ::= "x > 5" HasNChars(s, n) ::= "string s has length n"

Predicates can have varying numbers of arguments and input types.

For ease of use, we define one "type"/"domain" that we work over. This set of objects is called the "domain of discourse".

For each of the following, what might the domain be? (1) "x is a cat", "x barks", "x ruined my couch"

(2) "x is prime", "x = 0", "x < 0", "x is a power of two"

(3) "student x has taken course y" "x is a pre-req for z"

For ease of use, we define one "type"/"domain" that we work over. This non-empty set of objects is called the "domain of discourse".

For each of the following, what might the domain be? (1) "x is a cat", "x barks", "x ruined my couch"

"mammals" or "sentient beings" or "cats and dogs" or ...

(2) "x is prime", "x = 0", "x < 0", "x is a power of two"

"numbers" or "integers" or "integers greater than 5" or ...

(3) "student x has taken course y" "x is a pre-req for z"

"students and courses" or "university entities" or ...

We use *quantifiers* to talk about collections of objects.

∀x P(x)
P(x) is true for every x in the domain read as "for all x, P of x"

∃x P(x)

There is an x in the domain for which P(x) is true read as "there exists x, P of x"

We use *quantifiers* to talk about collections of objects. Universal Quantifier ("for all"): ∀x P(x) P(x) is true for every x in the domain read as "for all x, P of x"

Examples: Are these true?

- $\forall x \text{ Odd}(x)$
- $\forall x \text{ LessThan4}(x)$

We use *quantifiers* to talk about collections of objects. Universal Quantifier ("for all"): ∀x P(x) P(x) is true for every x in the domain read as "for all x, P of x"

Examples: Are these true? It depends on the domain. For example:

- $\forall x \text{ Odd}(x)$
- $\forall x \text{ LessThan4}(x)$

{1, 3, -1, -27}	Integers	Odd Integers
True	False	True
True	False	False

We use *quantifiers* to talk about collections of objects. Existential Quantifier ("exists"): $\exists x P(x)$ There is an x in the domain for which P(x) is true read as "there exists x, P of x"

Examples: Are these true?

- $\exists x \operatorname{Odd}(x)$
- $\exists x \text{ LessThan4}(x)$

We use *quantifiers* to talk about collections of objects. **Existential Quantifier ("exists"):** $\exists x P(x)$ **There is** an x in the domain for which P(x) is true read as "there exists x, P of x"

Examples: Are these true? It depends on the domain. For example:

• $\exists x \text{ Odd}(x)$

• $\exists x \text{ LessThan4}(x)$

{1, 3, -1, -27}	Integers	Positive Multiples of 5
True	True	True
True	True	False

Just like with propositional logic, we need to define variables (this time **predicates**) before we do anything else. We must also now define a **domain of discourse** before doing anything else.

Predicate Definition	Prec	licate	Defin	itions
----------------------	------	--------	-------	--------

Domain of Discourse Positive Integers Even(x) ::= "x is even"Greater(x, y) ::= "x > y"Odd(x) ::= "x is odd"Equal(x, y) ::= "x = y"Prime(x) ::= "x is prime"Sum(x, y, z) ::= "x + y = z"

omain of	Discourse
Positive	ntegers

Even(x) ::= "x is even"	Greater(x, y) ::= " $x > y$ "
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Determine the truth values of each of these statements:

∃x Even(x)

 $\forall x \text{ Odd}(x)$

 $\forall x (Even(x) \lor Odd(x))$

 $\exists x (Even(x) \land Odd(x))$

∀x Greater(x+1, x)

 $\exists x (Even(x) \land Prime(x))$

Domain of	Discourse
Positive	Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= "x
Odd(x) ::= "x is odd"	Equal(x, y) ::= "x = y
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x +

Determine the truth values of each of these statements:

- $\exists x Even(x)$ T e.g. 2, 4, 6, ... F e.g. 2, 4, 6, ... $\forall x \text{ Odd}(x)$
- $\forall x (Even(x) \lor Odd(x))$ Т

F

Т

- $\exists x (Even(x) \land Odd(x))$
- $\forall x \text{ Greater}(x+1, x)$
- $\exists x (Even(x) \land Prime(x)) \top$

- every integer is either even or odd
 - no integer is both even and odd
 - adding 1 makes a bigger number
 - Even(2) is true and Prime(2) is true

Domain of Discourse Positive Integers

Pred	icate	Definitions	
			1

Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

∀x ∃y Greater(y, x)

∀x ∃y Greater(x, y)

 $\forall x \exists y (Greater(y, x) \land Prime(y))$

 $\forall x \text{ (Prime(x)} \rightarrow \text{(Equal(x, 2)} \lor \text{Odd(x)))}$

 $\exists x \exists y (Sum(x, 2, y) \land Prime(x) \land Prime(y))$

Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Positive Integers

Even(x) ::= "x is even"	Greater(x, y) ::= "x >
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y'$
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y

' = 7"

Translate the following statements to English

∀x ∃y Greater(y, x)

For every positive integer x, there is a positive integer y, such that y > x.

∀x ∃y Greater(x, y)

For every positive integer x, there is a positive integer y, such that x > y.

 $\forall x \exists y (Greater(y, x) \land Prime(y))$

For every positive integer x, there is a pos. int. y such that y > x and y is prime.

 $\forall x \text{ (Prime(x)} \rightarrow \text{(Equal(x, 2)} \lor \text{Odd(x)))}$

For each positive integer x, if x is prime, then x = 2 or x is odd.

 $\exists x \exists y (Sum(x, 2, y) \land Prime(x) \land Prime(y))$

There exist positive integers x and y such that x + 2 = y and x and y are prime.

Statements with Quantifiers (Natural Translations)

Predicate Definitions

Domain of Discourse Positive Integers

Even(x) ::= "x is even"	Greater(x, y) ::= " $x > y$ "
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

∀x ∃y Greater(y, x)

There is no greatest positive integer.

∀x ∃y Greater(x, y)

There is no least positive integer.

 $\forall x \exists y (Greater(y, x) \land Prime(y))$

For every positive integer there is a larger number that is prime.

 $\forall x \text{ (Prime(x)} \rightarrow \text{(Equal(x, 2)} \lor \text{Odd(x)))}$

Every prime number is either 2 or odd.

 $\exists x \exists y (Sum(x, 2, y) \land Prime(x) \land Prime(y))$

There exist prime numbers that differ by two."

Lecture 5 Activity

- You will be assigned to **breakout rooms**. Please:
- Introduce yourself
- Choose someone to share screen, showing this PDF
- What is the English language translation of $\exists x (Odd(x) \land LessThan(x, 5))$

Fill out a poll everywhere for Activity Credit! Go to <u>pollev.com/philipmg</u> and login with your UW identity

> **Domain of Discourse** Positive Integers

Predicate Definitions Odd(x) ::= "x is odd" LessThan(x, y) ::= "x < y"

English to Predicate Logic

Domain of Discourse Mammals **Predicate Definitions**

Cat(x) ::= "x is a cat" Red(x) ::= "x is red" LikesTofu(x) ::= "x likes tofu"

"Red cats like tofu"

"Some red cats don't like tofu"

English to Predicate Logic

Domain of Discourse Mammals Predicate Definitions

Cat(x) ::= "x is a cat" Red(x) ::= "x is red" LikesTofu(x) ::= "x likes tofu"

"Red cats like tofu"

 $\forall x ((\text{Red}(x) \land \text{Cat}(x)) \rightarrow \text{LikesTofu}(x))$

"Some red cats don't like tofu"

 $\exists y ((\text{Red}(y) \land \text{Cat}(y)) \land \neg \text{LikesTofu}(y))$

English to Predicate Logic

Domain of Discourse Mammals Predicate Definitions

Cat(x) ::= "x is a cat" Red(x) ::= "x is red"

LikesTofu(x) ::= "x likes tofu"

When putting two predicates together like this, we use an "and".

"Red cats like tofu"

When restricting to a smaller domain in a "for all" we use **implication**.

When there's no leading quantification, it means "for all".

"Some red cats don't like tofu"
When restricting to a smaller domain in an "exists" we use and.

"Some" means "there exists".

Negations of Quantifiers

Predicate Definitions

PurpleFruit(x) ::= "x is a purple fruit"

(*) $\forall x PurpleFruit(x)$ ("All fruits are purple")

What is the negation of (*)?

- (a) "there exists a purple fruit"
- (b) "there exists a non-purple fruit"
- (c) "all fruits are not purple"

Try your intuition! Which one "feels" right?

Key Idea: In every domain, exactly one of a statement and its negation should be true.

Negations of Quantifiers

Predicate Definitions

PurpleFruit(x) ::= "x is a purple fruit"

(*) $\forall x PurpleFruit(x)$ ("All fruits are purple")

What is the negation of (*)?

- (a) "there exists a purple fruit"
- (b) "there exists a non-purple fruit"
- (c) "all fruits are not purple"

Key Idea: In every domain, exactly one of a statement and its negation should be true.

Domain of Discourse {apple}

The only choice that ensures exactly one of the statement and its negation is (b).

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

"There is no largest integer"

$$\neg \exists x \forall y (x \ge y)$$

$$\equiv \forall x \neg \forall y (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

$$\equiv \forall x \exists y (x < y)$$

"For every integer there is a larger integer"

 $\exists x \ (P(x) \land Q(x)) \qquad \forall S. \qquad \exists x \ P(x) \land \exists x \ Q(x)$

 $\exists x (P(x) \land Q(x)) VS. \exists x P(x) \land \exists x Q(x)$

This one asserts P and Q of the same x.

This one asserts P and Q of potentially different x's.

```
Example: NotLargest(x) \equiv \exists y Greater (y, x)
\equiv \exists z Greater (z, x)
```

truth value:

doesn't depend on y or z "bound variables" does depend on x "free variable"

quantifiers only act on free variables of the formula they quantify

 $\forall \mathbf{x} (\exists \mathbf{y} (\mathsf{P}(\mathbf{x},\mathbf{y}) \rightarrow \forall \mathbf{x} \mathsf{Q}(\mathbf{y},\mathbf{x})))$

This isn't "wrong", it's just horrible style. Don't confuse your reader by using the same variable multiple times...there are a lot of letters... • Bound variable names don't matter

 $\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)$

- Positions of quantifiers can sometimes change $\forall x (Q(x) \land \exists y P(x, y)) \equiv \forall x \exists y (Q(x) \land P(x, y))$
- But: order is important...

Quantifier Order Can Matter

Predicate Definitions GreaterEq $(x, y) ::= "x \ge y"$

"There is a number greater than or equal to all numbers."

 $\exists x \forall y \text{ GreaterEq}(x, y)))$

"Every number has a number greater than or equal to it."

 $\forall y \exists x \text{ GreaterEq}(x, y))$

The purple statement requires **an entire row** to be true. The red statement requires one entry in **each column** to be true.

y

Quantification with Two Variables

expression	when true	when false
∀x ∀ y P(x, y)	Every pair is true.	At least one pair is false.
∃ x ∃ y P(x, y)	At least one pair is true.	All pairs are false.
∀ x ∃ y P(x, y)	We can find a specific y for each x. $(x_1, y_1), (x_2, y_2), (x_3, y_3)$	Some x doesn't have a corresponding y.
∃ y ∀ x P(x, y)	We can find ONE y that works no matter what x is. (x ₁ , y), (x ₂ , y), (x ₃ , y)	For any candidate y, there is an x that it doesn't work for.