Section 07: Structural Induction, REs, and CFGs

1. Structural Induction

(a) Consider the following recursive definition of strings.

Basis Step: " " is a string
Recursive Step: If X is a string and c is a character then append (c, X) is a string.
Recall the following recursive definition of the function len:

$$
\begin{array}{ll}
\operatorname{len}(" ") & =0 \\
\operatorname{len}(\operatorname{append}(c, X)) & =1+\operatorname{len}(X)
\end{array}
$$

Now, consider the following recursive definition:

$$
\begin{array}{ll}
\text { double("") } & =" " \\
\text { double(append }(c, X)) & =\operatorname{append}(c, \operatorname{append}(c, \operatorname{double}(X))) .
\end{array}
$$

Prove that for any string X, len $(\operatorname{double}(X))=2 \operatorname{len}(X)$.
(b) Consider the following definition of a (binary) Tree:

Basis Step: • is a Tree.
Recursive Step: If L is a Tree and R is a Tree then $\operatorname{Tree}(\bullet, L, R)$ is a Tree.
The function leaves returns the number of leaves of a Tree. It is defined as follows:

$$
\begin{array}{ll}
\text { leaves }(\bullet) & =1 \\
\text { leaves }(\operatorname{Tree}(\bullet, L, R)) & =\text { leaves }(L)+\operatorname{leaves}(R)
\end{array}
$$

Also, recall the definition of size on trees:

$$
\begin{array}{ll}
\operatorname{size}(\bullet) & =1 \\
\operatorname{size}(\operatorname{Tree}(\bullet, L, R)) & =1+\operatorname{size}(L)+\operatorname{size}(R)
\end{array}
$$

Prove that leaves $(T) \geq \operatorname{size}(T) / 2+1 / 2$ for all Trees T.
(c) Prove the previous claim using strong induction. Define $P(n)$ as "all trees T of size n satisfy leaves $(T) \geq$ $\operatorname{size}(T) / 2+1 / 2$ ". You may use the following facts:

- For any tree T we have $\operatorname{size}(T) \geq 1$.
- For any tree $T, \operatorname{size}(T)=1$ if and only if $T=\bullet$.

If we wanted to prove these claims, we could do so by structural induction.
Note, in the inductive step you should start by letting T be an arbitrary tree of size $k+1$.

2. Regular Expressions

(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).
(b) Write a regular expression that matches all base-3 numbers that are divisible by 3 .
(c) Write a regular expression that matches all binary strings that contain the substring " 111 ", but not the substring " 000 ".

3. CFGs

(a) All binary strings that end in 00 .
(b) All binary strings that contain at least three 1's.
(c) All strings over $\{0,1,2\}$ with the same number of 1 s and 0 s and exactly one 2.

Hint: Try modifying the grammar from lecture for binary strings with the same number of 1 s and 0 s . (You may need to introduce new variables in the process.)

4. Walk the Dawgs

Suppose a dog walker takes care of $n \geq 12$ dogs. The dog walker is not a strong person, and will walk dogs in groups of 3 or 7 at a time (every dog gets walked exactly once). Prove the dog walker can always split the n dogs into groups of 3 or 7 .

5. Reversing a Binary Tree

Consider the following definition of a (binary) Tree.
Basis Step Nil is a Tree.
Recursive Step If L is a Tree, R is a Tree, and x is an integer, then $\operatorname{Tree}(x, L, R)$ is a Tree.
The sum function returns the sum of all elements in a Tree.

$$
\begin{array}{ll}
\operatorname{sum}(\operatorname{Nil}) & =0 \\
\operatorname{sum}(\operatorname{Tree}(x, L, R)) & =x+\operatorname{sum}(L)+\operatorname{sum}(R)
\end{array}
$$

The following recursively defined function produces the mirror image of a Tree.

$$
\begin{array}{ll}
\text { reverse }(\operatorname{Nil}) & =\operatorname{Nil} \\
\text { reverse }(\operatorname{Tree}(x, L, R)) & =\operatorname{Tree}(x, \text { reverse }(R), \text { reverse }(L))
\end{array}
$$

Show that, for all Trees T that

$$
\operatorname{sum}(T)=\operatorname{sum}(\operatorname{reverse}(T))
$$

