
Section 07: Solutions

1. Structural Induction
(a) Consider the following recursive definition of strings.

Basis Step: "" is a string

Recursive Step: If X is a string and c is a character then append(c,X) is a string.

Recall the following recursive definition of the function len:

len("") = 0

len(append(c,X)) = 1 + len(X)

Now, consider the following recursive definition:

double("") = ""
double(append(c,X)) = append(c, append(c, double(X))).

Prove that for any string X, len(double(X)) = 2len(X).

Solution:

For a string X, let P(X) be “len(double(X)) = 2len(X)”. We prove P(X) for all strings X by structural
induction on X.

Base Case (X = ""): By definition, len(double("")) = len("") = 0 = 2 · 0 = 2len(""), so P("") holds

Inductive Hypothesis: Suppose P(X) holds for some arbitrary string X.

Inductive Step: Goal: Show that P(append(c,X)) holds for any character c.

len(double(append(c,X))) = len(append(c, append(c, double(X)))) [By Definition of double]
= 1 + len(append(c, double(X))) [By Definition of len]
= 1 + 1 + len(double(X)) [By Definition of len]
= 2 + 2len(X) [By IH]
= 2(1 + len(X)) [Algebra]
= 2(len(append(c,X))) [By Definition of len]

This proves P(append(c,X)).

Conclusion: P(X) holds for all strings X by structural induction.

(b) Consider the following definition of a (binary) Tree:

Basis Step: • is a Tree.

Recursive Step: If L is a Tree and R is a Tree then Tree(•, L,R) is a Tree.

The function leaves returns the number of leaves of a Tree. It is defined as follows:
leaves(•) = 1

leaves(Tree(•, L,R)) = leaves(L) + leaves(R)

Also, recall the definition of size on trees:

size(•) = 1

size(Tree(•, L,R)) = 1 + size(L) + size(R)
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Prove that leaves(T ) ≥ size(T )/2 + 1/2 for all Trees T .

Solution:

For a tree T , let P be leaves(T ) ≥ size(T )/2 + 1/2. We prove P for all trees T by structural induction on
T .

Base Case (T = •): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. So, leaves(•) = 1 ≥
1/2 + 1/2 = size(•)/2 + 1/2, so P(•) holds.

Inductive Hypothesis: Suppose P(L) and P(R) hold for some arbitrary trees L,R.

Inductive Step: Goal: Show that P(Tree(•, L,R)) holds.

leaves(Tree(•, L,R)) = leaves(L) + leaves(R) [By Definition of leaves]
≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) [By IH]
= (1/2 + size(L)/2 + size(R)/2) + 1/2 [By Algebra]

=
1 + size(L) + size(R)

2
+ 1/2 [By Algebra]

= size(T )/2 + 1/2 [By Definition of size]

This proves P(Tree(•, L,R)).

Conclusion: Thus, P(T ) holds for all trees T by structural induction.

(c) Prove the previous claim using strong induction. Define P (n) as “all trees T of size n satisfy leaves(T ) ≥
size(T )/2 + 1/2”. You may use the following facts:

• For any tree T we have size(T ) ≥ 1.

• For any tree T , size(T ) = 1 if and only if T = •.

If we wanted to prove these claims, we could do so by structural induction.

Note, in the inductive step you should start by letting T be an arbitrary tree of size k + 1.

Solution:

Let P (n) be “all trees T of size n satisfy leaves(T ) ≥ size(T )/2 + 1/2”. We show P (n) for all integers
n ≥ 1 by strong induction on n.

Base Case: Let T be an arbitrary tree of size 1. The only tree with size 1 is •, so T = •. By definition,
leaves(T ) = leaves(•) = 1 and thus size(T ) = 1 = 1/2 + 1/2 = size(T )/2 + 1/2. This shows the base
case holds.

Inductive Hypothesis: Suppose that P (j) holds for all integers j = 1, 2, . . . , k for some arbitrary integer
k ≥ 1.

Inductive Step: Let T be an arbitrary tree of size k+1. Since k+1 > 1, we must have T 6= •. It follows
from the definition of a tree that T = Tree(•, L,R) for some trees L and R. By definition, we have
size(T ) = 1 + size(L) + size(R). Since sizes are non-negative, this equation shows size(T ) > size(L)
and size(T ) > size(R) meaning we can apply the inductive hypothesis. This says that leaves(L) ≥
size(L)/2 + 1/2 and leaves(R) ≥ size(R)/2 + 1/2.
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We have,

leaves(T ) = leaves(Tree(•, L,R))

= leaves(L) + leaves(R) [By Definition of leaves]
≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) [By IH]
= (1/2 + size(L)/2 + size(R)/2) + 1/2 [By Algebra]

=
1 + size(L) + size(R)

2
+ 1/2 [By Algebra]

= size(T )/2 + 1/2 [By Definition of size]

This shows P (k + 1).

Conclusion: P (n) holds for all integers n ≥ 1 by the principle of strong induction.

Note, this proves the claim for all trees because every tree T has some size s ≥ 1. Then P (s) says that
all trees of size s satisfy the claim, including T .

2. Regular Expressions
(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

Solution:

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗)

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

Solution:

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗0)

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the
substring “000”.

Solution:

(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)111(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)
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3. CFGs
(a) All binary strings that end in 00.

Solution:

S → 0S | 1S | 00

(b) All binary strings that contain at least three 1’s.
Solution:

S → TTT
T → 0T | T0 | 1T | 1

(c) All strings over {0,1,2} with the same number of 1s and 0s and exactly one 2.
Hint: Try modifying the grammar from lecture for binary strings with the same number of 1s and 0s.

(You may need to introduce new variables in the process.)
Solution:

We can do this by slightly modifying the grammar from lecture.

S → 2T | T2 | ST | TS | 0S1 | 1S0
T → TT | 0T1 | 1T0 | ε

T is the grammar from lecture. It generates all binary strings with the same number of 1s and 0s.

S matches a 2 at the beginning or end. The rest of the string must then match T since it cannot have
another 2. If neither the first nor last character is a 2, then it falls into the usual cases for matching 0s
and 1s, so we can mostly use the same rules as T. The main change is that SS becomes ST | TS to ensure
that exactly one of the two parts contains a 2. The other change is that there is no ε since a 2 must
appear somewhere.

4. Walk the Dawgs
Suppose a dog walker takes care of n ≥ 12 dogs. The dog walker is not a strong person, and will walk dogs in
groups of 3 or 7 at a time (every dog gets walked exactly once). Prove the dog walker can always split the n dogs
into groups of 3 or 7.

Solution:

Let P (n) be “a group with n dogs can be split into groups of 3 or 7 dogs.” We will prove P (n) for all natural
numbers n ≥ 12 by strong induction.

Base Cases n = 12, 13, 14, or 15: 12 = 3 + 3 + 3 + 3, 13 = 3 + 7 + 3, 14 = 7 + 7, So P (12), P (13), and
P (14) hold.

Inductive Hypothesis: Assume that P (12), . . . , P (k) hold for some arbitrary k ≥ 14.

Inductive Step: Goal: Show k + 1 dogs can be split into groups of size 3 or 7.
We first form one group of 3 dogs. Then we can divide the remaining k−2 dogs into groups of 3 or 7 by
the assumption P (k−2). (Note that k ≥ 14 and so k−2 ≥ 12; thus, P (k−2) is among our assumptions
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P (12), . . . , P (k).)

Conclusion: P (n) holds for all integers n ≥ 12 by by principle of strong induction.
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5. Reversing a Binary Tree
Consider the following definition of a (binary) Tree.

Basis Step Nil is a Tree.

Recursive Step If L is a Tree, R is a Tree, and x is an integer, then Tree(x, L,R) is a Tree.

The sum function returns the sum of all elements in a Tree.

sum(Nil) = 0

sum(Tree(x, L,R)) = x+ sum(L) + sum(R)

The following recursively defined function produces the mirror image of a Tree.

reverse(Nil) = Nil
reverse(Tree(x, L,R)) = Tree(x, reverse(R), reverse(L))

Show that, for all Trees T that
sum(T ) = sum(reverse(T ))

Solution:

For a Tree T , let P (T ) be “sum(T ) = sum(reverse(T ))”. We show P (T ) for all Trees T by structural induction.

Base Case: By definition we have reverse(Nil) = Nil. Applying sum to both sides we get sum(Nil) =
sum(reverse(Nil)), which is exactly P (Nil), so the base case holds.

Inductive Hypothesis: Suppose P (L) and P (R) hold for some arbitrary Trees L and R.

Inductive Step: Let x be an arbitrary integer. Goal: Show P (Tree(x, L,R)) holds.

We have,

sum(reverse(Tree(x, L,R))) = sum(Tree(x, reverse(R), reverse(L))) [Definition of reverse]
= x+ sum(reverse(R)) + sum(reverse(L)) [Definition of sum]
= x+ sum(R) + sum(L) [Inductive Hypothesis]
= x+ sum(L) + sum(R) [Commutativity]
= sum(Tree(x, L,R)) [Definition of sum]

This shows P (Tree(x, L,R)).

Conclusion: Therefore, P (T ) holds for all Trees T by structural induction.
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