Section 07: Solutions

1. Structural Induction

(a) Consider the following recursive definition of strings.

Basis Step: " " is a string
Recursive Step: If X is a string and c is a character then append (c, X) is a string.
Recall the following recursive definition of the function len:

$$
\begin{array}{ll}
\operatorname{len}(" ") & =0 \\
\operatorname{len}(\operatorname{append}(c, X)) & =1+\operatorname{len}(X)
\end{array}
$$

Now, consider the following recursive definition:

$$
\begin{array}{ll}
\text { double("") } & =" " \\
\text { double(append }(c, X)) & =\operatorname{append}(c, \operatorname{append}(c, \text { double }(X))) .
\end{array}
$$

Prove that for any string X, len $($ double $(X))=2 \operatorname{len}(X)$.

Solution:

For a string X, let $\mathrm{P}(X)$ be "len $($ double $(X))=2 \operatorname{len}(X)$ ". We prove $\mathrm{P}(X)$ for all strings X by structural induction on X.

Inductive Hypothesis: Suppose $\mathrm{P}(X)$ holds for some arbitrary string X.
Inductive Step: Goal: Show that $\mathrm{P}($ append $(c, X))$ holds for any character c.

$$
\begin{aligned}
\text { len }(\text { double }(\operatorname{append}(c, X))) & =\operatorname{len}(\operatorname{append}(c, \text { append }(c, \text { double }(X)))) & & {[\text { By Definition of double }] } \\
& =1+\operatorname{len}(\operatorname{append}(c, \operatorname{double}(X))) & & {[\text { By Definition of len }] } \\
& =1+1+\operatorname{len}(\operatorname{double}(X)) & & {[\text { By Definition of len }] } \\
& =2+2 \operatorname{len}(X) & & {[\text { By IH }] } \\
& =2(1+\operatorname{len}(X)) & & {[\text { Algebra }] } \\
& =2(\operatorname{len}(\operatorname{append}(c, X))) & & {[\text { By Definition of len }] }
\end{aligned}
$$

This proves $\mathrm{P}(\operatorname{append}(c, X))$.
Conclusion: $\mathrm{P}(X)$ holds for all strings X by structural induction.
(b) Consider the following definition of a (binary) Tree:

Basis Step: - is a Tree.
Recursive Step: If L is a Tree and R is a Tree then $\operatorname{Tree}(\bullet, L, R)$ is a Tree.
The function leaves returns the number of leaves of a Tree. It is defined as follows:

$$
\begin{array}{ll}
\text { leaves }(\bullet) & =1 \\
\text { leaves }(\operatorname{Tree}(\bullet, L, R)) & =\text { leaves }(L)+\text { leaves }(R)
\end{array}
$$

Also, recall the definition of size on trees:

$$
\begin{array}{ll}
\operatorname{size}(\bullet) & =1 \\
\operatorname{size}(\operatorname{Tree}(\bullet, L, R)) & =1+\operatorname{size}(L)+\operatorname{size}(R)
\end{array}
$$

Prove that leaves $(T) \geq \operatorname{size}(T) / 2+1 / 2$ for all Trees T.

Solution:

For a tree T, let P be leaves $(T) \geq \operatorname{size}(T) / 2+1 / 2$. We prove P for all trees T by structural induction on T.

Base Case ($\mathbf{T}=\bullet$): By definition of leaves (\bullet), leaves $(\bullet)=1$ and $\operatorname{size}(\bullet)=1$. So, leaves $(\bullet)=1 \geq$ $1 / 2+1 / 2=\operatorname{size}(\bullet) / 2+1 / 2$, so $\mathrm{P}(\bullet)$ holds.
Inductive Hypothesis: Suppose $\mathrm{P}(L)$ and $\mathrm{P}(R)$ hold for some arbitrary trees L, R.
Inductive Step: Goal: Show that $\mathrm{P}(\operatorname{Tree}(\bullet, L, R))$ holds.

$$
\begin{aligned}
\text { leaves }(\operatorname{Tree}(\bullet, L, R)) & =\operatorname{leaves}(L)+\text { leaves }(R) & & \text { [By Definition of leaves] } \\
& \geq(\operatorname{size}(L) / 2+1 / 2)+(\operatorname{size}(R) / 2+1 / 2) & & {[\text { By IH }] } \\
& =(1 / 2+\operatorname{size}(L) / 2+\operatorname{size}(R) / 2)+1 / 2 & & {[\text { By Algebra }] } \\
& =\frac{1+\operatorname{size}(L)+\operatorname{size}(R)}{2}+1 / 2 & & {[\text { By Algebra }] } \\
& =\operatorname{size}(T) / 2+1 / 2 & & {[\text { By Definition of size }] }
\end{aligned}
$$

This proves $\mathrm{P}(\operatorname{Tree}(\bullet, L, R))$.
Conclusion: Thus, $\mathrm{P}(T)$ holds for all trees T by structural induction.
(c) Prove the previous claim using strong induction. Define $P(n)$ as "all trees T of size n satisfy leaves $(T) \geq$ $\operatorname{size}(T) / 2+1 / 2$ ". You may use the following facts:

- For any tree T we have $\operatorname{size}(T) \geq 1$.
- For any tree $T, \operatorname{size}(T)=1$ if and only if $T=\bullet$.

If we wanted to prove these claims, we could do so by structural induction.
Note, in the inductive step you should start by letting T be an arbitrary tree of size $k+1$.

Solution:

Let $P(n)$ be "all trees T of size n satisfy leaves $(T) \geq \operatorname{size}(T) / 2+1 / 2$ ". We show $P(n)$ for all integers $n \geq 1$ by strong induction on n.

Base Case: Let T be an arbitrary tree of size 1 . The only tree with size 1 is \bullet, so $T=\bullet$. By definition, leaves $(T)=\operatorname{leaves}(\bullet)=1$ and thus size $(T)=1=1 / 2+1 / 2=\operatorname{size}(T) / 2+1 / 2$. This shows the base case holds.

Inductive Hypothesis: Suppose that $P(j)$ holds for all integers $j=1,2, \ldots, k$ for some arbitrary integer $k \geq 1$.

Inductive Step: Let T be an arbitrary tree of size $k+1$. Since $k+1>1$, we must have $T \neq \bullet$. It follows from the definition of a tree that $T=\operatorname{Tree}(\bullet, L, R)$ for some trees L and R. By definition, we have $\operatorname{size}(T)=1+\operatorname{size}(L)+\operatorname{size}(R)$. Since sizes are non-negative, this equation shows size $(T)>\operatorname{size}(L)$ and size $(T)>\operatorname{size}(R)$ meaning we can apply the inductive hypothesis. This says that leaves $(L) \geq$ $\operatorname{size}(L) / 2+1 / 2$ and leaves $(R) \geq \operatorname{size}(R) / 2+1 / 2$.

We have,

$$
\begin{aligned}
\operatorname{leaves}(T) & =\text { leaves }(\operatorname{Tree}(\bullet, L, R)) & & \\
& =\text { leaves }(L)+\operatorname{leaves}(R) & & \text { [By Definition of leaves] } \\
& \geq(\operatorname{size}(L) / 2+1 / 2)+(\operatorname{size}(R) / 2+1 / 2) & & {[\text { By IH] }} \\
& =(1 / 2+\operatorname{size}(L) / 2+\operatorname{size}(R) / 2)+1 / 2 & & {[\text { By Algebra] }} \\
& =\frac{1+\operatorname{size}(L)+\operatorname{size}(R)}{2}+1 / 2 & & {[\text { By Algebra] }} \\
& =\operatorname{size}(T) / 2+1 / 2 & & {[\text { By Definition of size] }}
\end{aligned}
$$

This shows $P(k+1)$.
Conclusion: $P(n)$ holds for all integers $n \geq 1$ by the principle of strong induction.
Note, this proves the claim for all trees because every tree T has some size $s \geq 1$. Then $P(s)$ says that all trees of size s satisfy the claim, including T.

2. Regular Expressions

(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

Solution:

$$
0 \cup\left((1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)(0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)^{*}\right)
$$

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3 .

Solution:

$$
0 \cup\left((1 \cup 2)(0 \cup 1 \cup 2)^{*} 0\right)
$$

(c) Write a regular expression that matches all binary strings that contain the substring " 111 ", but not the substring " 000 ".

Solution:

$$
\left(01 \cup 001 \cup 1^{*}\right)^{*}(0 \cup 00 \cup \varepsilon) 111\left(01 \cup 001 \cup 1^{*}\right)^{*}(0 \cup 00 \cup \varepsilon)
$$

3. CFGs

(a) All binary strings that end in 00 .

Solution:

$$
\mathbf{S} \rightarrow 0 \mathbf{S}|1 \mathbf{S}| 00
$$

(b) All binary strings that contain at least three 1's. Solution:

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{T T} \mathbf{T} \\
& \mathbf{T} \rightarrow 0 \mathbf{T}|\mathbf{T} 0| 1 \mathbf{T} \mid 1
\end{aligned}
$$

(c) All strings over $\{0,1,2\}$ with the same number of 1 s and 0 s and exactly one 2 .

Hint: Try modifying the grammar from lecture for binary strings with the same number of 1 s and 0 s . (You may need to introduce new variables in the process.)

Solution:

We can do this by slightly modifying the grammar from lecture.

$$
\begin{aligned}
& \mathbf{S} \rightarrow 2 \mathbf{T}|\mathbf{T} 2| \mathbf{S T}|\mathbf{T S}| 0 \mathbf{S} 1 \mid 1 \mathbf{S} 0 \\
& \mathbf{T} \rightarrow \mathbf{T} \mathbf{T}|0 \mathbf{T} 1| 1 \mathbf{T} 0 \mid \varepsilon
\end{aligned}
$$

\mathbf{T} is the grammar from lecture. It generates all binary strings with the same number of 1 s and 0 s .
\mathbf{S} matches a 2 at the beginning or end. The rest of the string must then match \mathbf{T} since it cannot have another 2. If neither the first nor last character is a 2 , then it falls into the usual cases for matching 0s and 1s, so we can mostly use the same rules as \mathbf{T}. The main change is that $\mathbf{S S}$ becomes $\mathbf{S T} \mid \mathbf{T S}$ to ensure that exactly one of the two parts contains a 2 . The other change is that there is no ε since a 2 must appear somewhere.

4. Walk the Dawgs

Suppose a dog walker takes care of $n \geq 12$ dogs. The dog walker is not a strong person, and will walk dogs in groups of 3 or 7 at a time (every dog gets walked exactly once). Prove the dog walker can always split the n dogs into groups of 3 or 7 .

Solution:

Let $P(n)$ be "a group with n dogs can be split into groups of 3 or 7 dogs." We will prove $P(n)$ for all natural numbers $n \geq 12$ by strong induction.

Base Cases $n=12,13,14$, or $15: 12=3+3+3+3,13=3+7+3,14=7+7$, $\operatorname{So} P(12), P(13)$, and $P(14)$ hold.
Inductive Hypothesis: Assume that $P(12), \ldots, P(k)$ hold for some arbitrary $k \geq 14$.
Inductive Step: Goal: Show $k+1$ dogs can be split into groups of size 3 or 7 .
We first form one group of 3 dogs. Then we can divide the remaining $k-2$ dogs into groups of 3 or 7 by the assumption $P(k-2)$. (Note that $k \geq 14$ and so $k-2 \geq 12$; thus, $P(k-2)$ is among our assumptions

$$
P(12), \ldots, P(k) .)
$$

Conclusion: $P(n)$ holds for all integers $n \geq 12$ by by principle of strong induction.

5. Reversing a Binary Tree

Consider the following definition of a (binary) Tree.
Basis Step Nil is a Tree.
Recursive Step If L is a Tree, R is a Tree, and x is an integer, then $\operatorname{Tree}(x, L, R)$ is a Tree.
The sum function returns the sum of all elements in a Tree.

$$
\begin{array}{ll}
\operatorname{sum}(\operatorname{Nil}) & =0 \\
\operatorname{sum}(\operatorname{Tree}(x, L, R)) & =x+\operatorname{sum}(L)+\operatorname{sum}(R)
\end{array}
$$

The following recursively defined function produces the mirror image of a Tree.

$$
\begin{array}{ll}
\text { reverse }(\operatorname{Nil}) & =\operatorname{Nil} \\
\operatorname{reverse}(\operatorname{Tree}(x, L, R)) & =\operatorname{Tree}(x, \text { reverse }(R), \text { reverse }(L))
\end{array}
$$

Show that, for all Trees T that

$$
\operatorname{sum}(T)=\operatorname{sum}(\operatorname{reverse}(T))
$$

Solution:

For a Tree T, let $P(T)$ be "sum $(T)=\operatorname{sum}($ reverse $(T))$ ". We show $P(T)$ for all Trees T by structural induction.
Base Case: By definition we have reverse $(\mathrm{Nil})=\mathrm{Nil}$. Applying sum to both sides we get sum $(\mathrm{Nil})=$ sum(reverse (Nil)), which is exactly $P(\mathrm{Nil})$, so the base case holds.

Inductive Hypothesis: Suppose $P(L)$ and $P(R)$ hold for some arbitrary Trees L and R.
Inductive Step: Let x be an arbitrary integer. Goal: Show P (Tree (x, L, R)) holds.
We have,

$$
\begin{aligned}
\operatorname{sum}(\operatorname{reverse}(\operatorname{Tree}(x, L, R))) & =\operatorname{sum}(\operatorname{Tree}(x, \operatorname{reverse}(R), \operatorname{reverse}(L))) & & \text { [Definition of reverse] } \\
& =x+\operatorname{sum}(\operatorname{reverse}(R))+\operatorname{sum}(\operatorname{reverse}(L)) & & \text { [Definition of sum }] \\
& =x+\operatorname{sum}(R)+\operatorname{sum}(L) & & \text { [Inductive Hypothesis] } \\
& =x+\operatorname{sum}(L)+\operatorname{sum}(R) & & \text { [Commutativity] } \\
& =\operatorname{sum}(\operatorname{Tree}(x, L, R)) & & \text { [Definition of sum }]
\end{aligned}
$$

This shows $P(\operatorname{Tree}(x, L, R))$.
Conclusion: Therefore, $P(T)$ holds for all Trees T by structural induction.

