1. Trickier Set Theory

Show that, for any set X, if $A \in \mathcal{P}(X)$, then there exists a set $B \in \mathcal{P}(X)$ such that $A \cap B = \emptyset$ and $A \cup B = X$.

(Note: this problem requires some thought.)

2. Prime Checking

You wrote the following code, isPrime(int n) which you are confident returns true if and only if n is prime (we assume its input is always positive).

```
public boolean isPrime(int n) {
    int potentialDiv = 2;
    while (potentialDiv < n) {
        if (n % potenttialDiv == 0)
            return false;
        potentialDiv++;
    }
    return true;
}</pre>
```

Your friend suggests replacing potentialDiv < n with potentialDiv <= Math.sqrt(n). In this problem, you'll argue the change is ok. That is, your method still produces the correct result if n is a positive integer.

We will use "nontrivial divisor" to mean a factor that isn't 1 or the number itself. Formally, a positive integer k being a "nontrivial divisor" of n means that $k|n, k \neq 1$ and $k \neq n$. Claim: when a positive integer n has a nontrivial divisor, it has a nontrivial divisor at most \sqrt{n} .

- (a) Let's try to break down the claim and understand it through examples. Show an example (a specific n and k) of a nontrivial divisor, of a divisor that is not nontrivial, and of a number with only trivial divisors.
- (b) Prove the claim. Hint: you may want to divide into two cases!
- (c) Informally explain why the fact about integers proved in (b) lets you change the code safely.

3. Modular Arithmetic

- (a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.
- (b) Prove that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv_m b$, where a and b are integers, then $a \equiv_n b$.

4. Euclid's Lemma¹

Show that, if a prime p divides ab, where a and b are integers, then $p \mid a$ or $p \mid b$.

You can use the following fact: if an integer p divides ab and gcd(p, a) = 1, then p divides b.

5. Divisors and Primes

Write an English proof of the following claim about a positive integer n: if the sum of the divisors of n is n + 1, then n is prime.

Hint: note that $n \mid n$ is always true.

6. Have we derived yet?

Each of the following proofs has some mistake in its reasoning - identify that mistake.

- (a) *Proof.* If it is sunny, then it is not raining. It is not sunny. Therefore it is raining.
- (b) Prove that if x + y is odd, either x or y is odd but not both.

Proof. Suppose without loss of generality that x is odd and y is even.

Then, $\exists k \ x = 2k + 1$ and $\exists m \ y = 2m$. Adding these together, we can see that x + y = 2k + 1 + 2m = 2k + 2m + 1 = 2(k + m) + 1. Since k and m are integers, we know that k + m is also an integer. So, we can say that x + y is odd. Hence, we have shown what is required.

(c) Prove that 2 = 1. :)

Proof. Let a, b be two equal, non-zero integers. Then,

a = b	
$a^2 = ab$	[Multiply both sides by A]
$a^2 - b^2 = ab - b^2$	[Subtract b^2 from both sides]
(a-b)(a+b) = b(a-b)	[Factor both sides]
a + b = b	[DIVIDE BOTH SIDES BY $a - b$]
b + b = b	[SINCE $a = b$]
2b = b	[SIMPLIFY]
2 = 1	[Divide both sides by b]

(d) Prove that $\sqrt{3} + \sqrt{7} < \sqrt{20}$

Proof.

 $\sqrt{3} + \sqrt{7} < \sqrt{20}$ $(\sqrt{3} + \sqrt{7})^2 < 20$ $3 + 2\sqrt{21} + 7 < 20$ 19.165 < 20

It is true that 19.165 < 20, hence, we have shown that $\sqrt{3} + \sqrt{7} < \sqrt{20}$

¹This proof isn't much longer than what you've seen before, but it can be a little easier to get stuck — use these as a chance to practice how to get unstuck if you do!