
Section 03: Solutions

1. Canonical Forms
Consider the boolean functions F (A,B,C) and G(A,B,C) specified by the following truth table:

A B C F (A,B,C) G(A,B,C)

1 1 1 1 0
1 1 0 1 1
1 0 1 0 0
1 0 0 0 0
0 1 1 1 1
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

(a) Write the DNF and CNF expressions for F (A,B,C). Solution:

DNF: ABC +ABC ′ +A′BC +A′BC ′ +A′B′C ′

CNF: (A′ +B + C ′)(A′ +B + C)(A+B + C ′)

(b) Write the DNF and CNF expressions for G(A,B,C). Solution:

DNF: ABC ′ +A′BC +A′B′C
CNF: (A′ +B′ + C ′)(A′ +B + C ′)(A′ +B + C)(A+B′ + C)(A+B + C)

2. Translate to Logic
Express each of these system specifications using predicates, quantifiers, and logical connectives. For some of these
problems, more than one translation will be reasonable depending on your choice of predicates.

(a) Every user has access to an electronic mailbox. Solution:

Let the domain be users and mailboxes. Let User(x) be “x is a user”, let Mailbox(y) be “y is a mailbox”,
and let Access(x, y) be “x has access to y”.

∀x (User(x) → (∃y (Mailbox(y) ∧ Access(x, y))))
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(b) The system mailbox can be accessed by everyone in the group if the file system is locked. Solution:

Solution 1: Let the domain be people in the group. Let CanAccessSM(x) be “x has access to the system
mailbox”. Let p be the proposition “the file system is locked.”

p → ∀x CanAccessSM(x).

Solution2: Let the domain be people and mailboxes and use Access(x, y) as defined in the solution to
part (a), and then also add InGroup(x) for “x is in the group”, and let SystemMailBox be the name for
the system mailbox. Then the translation becomes

FileSystemLocked → ∀x (InGroup(x) → Access(x, SystemMailBox)).

(c) The firewall is in a diagnostic state only if the proxy server is in a diagnostic state.

Solution:

Let the domain be all applications. Let Firewall(x) be “x is the firewall”, and let ProxyServer(x) be
“x is the proxy server.” Let Diagnostic(x) be “x is in a diagnostic state”.

∀x ∀y ((Firewall(x) ∧ Diagnostic(x)) → (ProxyServer(y) → Diagnostic(y))

(d) At least one router is functioning normally if the throughput is between 100kbps and 500 kbps and the proxy
server is not in diagnostic mode. Solution:

Let the domain be all applications and routers. Let Router(x) be “x is a router”, and let ProxyServer(x)
be “x is the proxy server.” Let Diagnostic(x) be “x is in a diagnostic state”. Let p be “the throughput
is between 100kbps and 500 kbps”. Let Functioning(y) be “y is functioning normally”.

(p ∧ ∀x (¬ ProxyServer(x) ∨ ¬ Diagnostic(x))) → ∃y (Router(y) ∧ Functioning(y))

3. Translate to English
Translate these system specifications into English where F (p) is “Printer p is out of service”, B(p) is “Printer p is
busy”, L(j) is “Print job j is lost,” and Q(j) is “Print job j is queued”. Let the domain be all printers and all print
jobs.

(a) ∃p (F (p) ∧B(p)) → ∃j L(j) Solution:

If at least one printer is busy and out of service, then at least one job is lost.

2



(b) (∀j B(j)) → (∃p Q(p)) Solution:

If all printers are busy, then there is a queued job.

(c) ∃j (Q(j) ∧ L(j)) → ∃p F (p) Solution:

If there is a queued job that is lost, then a printer is out of service.

(d) (∀p B(p) ∧ ∀j Q(j)) → ∃j L(j) Solution:

If all printers are busy and all jobs are queued, then there is some lost job.

4. Domain Restriction
Translate each of the following sentences into logical notation. These translations require some of our quantifier
tricks. You may use the operators + and · which take two numbers as input and evaluate to their sum or product,
respectively. Remember:

• To restrict the domain under a ∀ quantifier, add a hypothesis to an implication.

• To restrict the domain under an ∃ quantifier, AND in the restriction.

• If you want variables to be different, you have to explicitly require them to be not equal.

(a) Domain: Positive integers; Predicates: Even, Prime, Equal
“There is only one positive integer that is prime and even.” Solution:

∃x(Prime(x) ∧ Even(x) ∧ ∀y[¬ Equal(x, y) → ¬(Even(y) ∧ Prime(y))])

(b) Domain: Real numbers; Predicates: Even, Prime, Equal
“There are two different prime numbers that sum to an even number.” Solution:

∃x∃y(Prime(x) ∧ Prime(y) ∧ ¬Equal(x, y) ∧ Even(x+ y))

(c) Domain: Real numbers; Predicates: Even, Prime, Equal
“The product of two distinct prime numbers is not prime.” Solution:

∀x∀y([Prime(x) ∧ Prime(y) ∧ ¬ Equal(x, y)] → ¬ Prime(xy))

(d) Domain: Real numbers; Predicates: Even, Prime, Equal, Postivite, Greater, Integer
“For every positive integer, there is a greater even integer” Solution:

∀x(Positive(x) ∧ Integer(x) → [∃y(Integer(y) ∧ Even(y) ∧ Greater(y, x))])
Or equivalently: ∀x∃y(Positive(x) ∧ Integer(x) → (Integer(y) ∧ Even(y) ∧ Greater(y, x)))
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5. Quantifier Switch
Consider the following pairs of sentences. For each pair, determine if one implies the other, if they are equivalent,
or neither.

(a) ∀x ∀y P (x, y) ∀y ∀x P (x, y) Solution:

These sentences are the same; switching universal quantifiers makes no difference.

(b) ∃x ∃y P (x, y) ∃y ∃x P (x, y) Solution:

These sentences are the same; switching existential quantifiers makes no difference.

(c) ∀x ∃y P (x, y) ∀y ∃x P (x, y) Solution:

These are only the same if P is symmetric (i.e., the order of the arguments doesn’t matter). If the order
of the arguments does matter, then these are different statements. For instance, if P (x, y) is “x < y”,
then the first statement says “for every x, there is a corresponding y such that x < y”, whereas the second
says “for every y, there is a corresponding x such that x < y”. In other words, in the first statement y is
a function of x, and in the second x is a function of y.

If your domain of discourse is “positive integers”, for example, the first is true and the second is false; but
for “negative integers” the second is true while the first is false.

(d) ∀x ∃y P (x, y) ∃x ∀y P (x, y) Solution:

These two statements are usually different.

(e) ∀x ∃y P (x, y) ∃y ∀x P (x, y) Solution:

The second statement is “stronger” than the first (that is, the second implies the first). For the first, y is
allowed to depend on x. For the second, one specific y must work for all x. Thus if the second is true,
whatever value of y makes it true, can also be plugged in for y in the first statement for every x. On the
other hand, if the first statement is true, it might be that different y’s work for the different x’s and no
single value of y exists to make the latter true.

As an example, let you domain of discourse be positive real numbers, and let P (x, y) be xy = 1. The first
statement is true (always take y to be 1/x, which is another positive real number). The second statement
is not true; it asks for a single number that always makes the product 1.

4



6. Quantifier Ordering
Let your domain of discourse be a set of Element objects given in a list called Domain. Imagine you have a
predicate pred(x, y), which is encoded in the java method public boolean pred(int x, int y). That is you
call your predicate pred true if and only if the java method returns true.

(a) Consider the following Java method:

public boolean Mystery(Domain D){
for(Element x : D) {

for(Element y : D) {
if(pred(x,y))

return true;
}

}
}

Mystery corresponds to a quantified formula (for D being the domain of discourse), what is that formula?
Solution:

∃x∃y(pred(x, y)). If any combination of x and y causes pred to evaluate to true, we return true; that is
we just want x, y to exist.

(b) What formula does mystery2 correspond to

public boolean Mystery2(Domain D){
for(Element x : D) {

boolean thisXPass = false;
for(Element y : D) {

if(pred(x,y))
thisXPass = true;

}
if(!thisXPass)

return false;
}
return true;

}

Solution:

∀x∃y(pred(x, y)).

For a given x, when we come across a y that makes pred(x, y) true, we set the given x to pass (so one y
suffices for a given x) but we require every x to pass, so x is universally quantified. Since y is allowed to
depend on x, we have x as the outermost variable.

7. Find the Bug
Each of these inference proofs is incorrect. Identify the line (or lines) which incorrectly apply a law, and explain
the error. Then, if the claim is false, give concrete examples of propositions to show it is false. If it is true, write a
correct proof.
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(a) This proof claims to show that given a → (b ∨ c), we can conclude a → c.
1. a → (b ∨ c) [Given]

2.1. a [Assumption]
2.2. ¬ b [Assumption]
2.3. b ∨ c [Modus Ponens, from 1 and 2.1]
2.4. c [∨ elimination, from 2.2 and 2.3]

2. a → c [Direct Proof Rule, from 2.1-2.4]
Solution:

The error here is in lines 2.2 and 2. When beginning a subproof for the direct proof rule, only one
assumption may be introduced. If the author of this proof wanted to assume both a and ¬ b, they should
have used the assumption a ∧ ¬ b, which would make line 3 be (a ∧ ¬ b) → c instead.

And the claim is false in general. Consider:
a: “I am outside”
b: “I am walking my dog”
c: “I am swimming”
If we assert “If I am outside, I am walking my dog or swimming,” we cannot reasonably conclude that “If
I am outside, I am swimming” (a → c).

(b) This proof claims to show that given p → q and r, we can conclude p → (q ∨ r).

1.p → q [Given]
2.r [Given]
3.p → (q ∨ r) [Intro ∨ (1,2)]

Solution:

Bug is in step 3, we’re applying the rule to only a subexpression.

The statement is true though. A correct proof introduces p as an assumption, uses MP to get q, introduces
∨ to get q ∨ r, and the direct proof rule to complete the argument.

(c) This proof claims to show that given p → q and q that we can conclude p

1.p → q [Given]
2.q [Given]
3.¬p ∨ q [Law of Implication (1)]
4.q [Eliminate ∨ (2,3)

Solution:

The bug is in step 4. Eliminate ∨ from 3 would let us conclude ¬p if we had ¬q or q if we had p. It
doesn’t tell us anything with knowing q.

Indeed, the claim is false. We could have p: “it is raining”
q: “I have my umbrella”

And be a person who always carries their umbella with them (even on sunny days). The information is
not sufficient to conclude p.
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8. Formal Proof (Direct Proof Rule)
Show that ¬t → s follows from t ∨ q, q → r and r → s. Solution:

1. t ∨ q [Given]
2. q → r [Given]
3. r → s [Given]

4.1. ¬t [Assumption]
4.2. q [Elim of ∨: 1, 4.1]
4.3. r [MP of 4.2, 2]
4.4. s [MP 4.3, 3]

4. ¬t → s [Direct Proof Rule]

9. Formal Proof
Show that ¬p follows from ¬(¬r ∨ t), ¬q ∨ ¬s and (p → q) ∧ (r → s). Solution:

1. ¬(¬r ∨ t) [Given]
2. ¬q ∨ ¬s [Given]
3. (p → q) ∧ (r → s) [Given]
4. ¬¬r ∧ ¬t [DeMorgan’s Law: 1]
5. ¬¬r [Elim of ∧: 4]
6. r [Double Negation: 5]
7. r → s [Elim of ∧: 3]
8. s [MP, 6,7]
9. ¬¬s [Double Negation: 8]

10. ¬s ∨ ¬q [Commutative: 2]
11. ¬q [Elim of ∨: 10, 9]
12. p → q [Elim of ∧: 3]
13. ¬q → ¬p [Contrapositive: 12]
14. ¬p [MP: 11,13]
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