1. Equivalences

Prove that each of the following pairs of propositional formulae are equivalent using propositional equivalences.

- (a) $\neg p \rightarrow (s \rightarrow r)$ vs. $s \rightarrow (p \lor r)$
- (b) $p \leftrightarrow \neg p$ vs. F (Hint: recall the Biconditional rule $p \leftrightarrow r \equiv (p \to r) \land (r \to p)$)

2. Non-equivalence

Prove that the following pairs of propositional formulae are not equivalent by finding inputs they differ on.

- (a) $p \to r$ vs. $r \to p$
- (b) $a \to (b \land c)$ vs. $(a \to b) \land c$

3. They mean the same thing

Prove the following claims using chains of elementary equivalences, as shown in lecture:

$$\neg(\neg q \lor r) \equiv \neg(\neg q) \land \neg r \tag{1}$$

$$\neg(\neg q) \land \neg r \equiv q \land \neg r \tag{2}$$

$$q \wedge \neg r \equiv \neg r \wedge q \tag{3}$$

Your friend says this means that $\neg(q \rightarrow r) \equiv \neg r \wedge q$. Is that true?

4. Equivalent Translations

Prove that the following English statements are equivalent.

(i) Unless it isn't raining or I don't have an umbrella, I buy a book.

(ii) It isn't raining or I don't have an umbrella or I buy a book.

5. Boolean Algebra

For each of the following parts, write the logical expression using boolean algebra operators. Then, simplify it using axioms and theorems of boolean algebra.

- (a) $\neg p \lor (\neg q \lor (p \land q))$
- (b) $\neg (p \lor (q \land p))$

6. Properties of XOR

Like \wedge and \vee , the \oplus operator (exclusive or) has many interesting properties. For example, it is easy to verify with a truth table that \oplus is also associative. In this problem, we will prove some additional properties of \oplus .

For this problem only, you may also use the equivalence

$$p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$$

which you may cite as "Definition of \oplus ". This equivalence allows you to translate \oplus into an expression involving only \wedge , \vee , and \neg , so that the standard equivalences can then be applied.

Prove the following claims using chains of elementary equivalences, as shown in lecture:

- (a) $p \oplus q \equiv q \oplus p$ (Commutativity)
- (b) $p \oplus p \equiv \mathsf{F}$ and $p \oplus \neg p \equiv \mathsf{T}$
- (c) $p \oplus \mathsf{F} \equiv p$ and $p \oplus \mathsf{T} \equiv \neg p$
- (d) $(\neg p) \oplus q \equiv \neg (p \oplus q) \equiv p \oplus (\neg q)$. I.e., negating one of the inputs negates the overall expression.