CSE 311: Foundations of Computing I

Modular Arithmetic: Definitions and Properties

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$:
$a \mid b \leftrightarrow \exists k \in \mathbb{Z}(b=k a)$

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$, there exist unique integers q, r with $0 \leq r<d$, such that $a=d q+r$.

To put it another way, if we divide d into a, we get a unique quotient ($q=a \operatorname{div} d$) and non-negative remainder smaller than $d(r=a \bmod d)$.

Definition: 'a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with $m>0$:
$a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)$

Properties of mod

- Let a, b, m be integers with $m>0$. Then, $a \equiv b(\bmod m)$ if and only if $a \bmod m=b \bmod m$.
- Let m be a positive integer. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d(\bmod m)$.
- Let m be a positive integer. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a c \equiv b d(\bmod m)$.
- Let a, b, m be integers with $m>0$. Then, $(a b) \bmod m=((a \bmod m)(b \bmod m)) \bmod m$.
- You can derive this using the Multiplication Property of Congruences; note that $a \equiv(a \bmod m)$ $(\bmod m)$ and $b \equiv(b \bmod m)(\bmod m)$.

GCD and Euclid's algorithm

- $\operatorname{gcd}(a, b)$ is the largest integer d such that $d \mid a$ and $d \mid b$.
- Euclid's algorithm: To efficiently compute $\operatorname{gcd}(a, b)$, you can repeatedly apply these facts:
$-\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$
$-\operatorname{gcd}(a, 0)=a$

Bézout's Theorem and Multiplicative Inverses

- Bézout's Theorem: If a and b are positive integers, then there exist integers s and t such that $\operatorname{gcd}(a, b)=$ $s a+t b$.
- To find s and t, you can use the Extended Euclidean Algorithm. See slides for a full walkthrough.
- The multiplicative inverse $\bmod m$ of $a \bmod m$ is $b \bmod m$ iff $a b \equiv 1(\bmod m)$.
- Suppose $\operatorname{gcd}(a, m)=1$. By Bézout's Theorem, there exist integers s and t such that $s a+t m=1$. Taking the mod of both sides, we get $(s a+t m) \bmod m=1 \bmod m=1$, so $s a \equiv 1(\bmod m)$. Thus, $s \bmod m$ is the multiplicative inverse of a.

