
CSE 311: Foundations of Computing

Lecture 29: Reductions and Turing Machines



Final exam Monday, Review session Sunday

• Monday at either 2:30-4:20 (B) or 4:30-6:20 (A)
– CSE2 G20
– Bring your UW ID

• Comprehensive: Full probs only on topics that were covered 
in homework. May have small probs on other topics.
– May includes pre-midterm topics, e.g., formal proofs.
– Reference sheets will be included.

• Review session:  Sunday 1-3 pm in CSE2 G20
– Bring your questions !!



Final exam

• ? problems



Final exam

• 9 problems
• Large problems on:

– DFA/RE/CFG design
– DFA/NFA algorithms (except NFA to RE)
– Irregularity
– Strong & Structural Induction
– English and Formal proofs about numbers/sets/relations/etc.

• Small problems on anything else

• 12 minutes per problem
– write quickly
– focus on the overall structure of the solution



Review:  Countability vs Uncountability

• To prove a set A countable, you must show
– There exists a listing x1,x2,x3, ... such that every 

element of A is in the list.

• To prove a set B uncountable, you must show
– For every listing x1,x2,x3, ... there exists some 

element in B that is not in the list.
– The diagonalization proof shows how to describe a 

missing element d in B based on the listing x1,x2,x3, ... .       
Important: the proof produces a d no matter what the listing is. 



Last time: Undecidability of the Halting Problem

CODE(P) means “the code of the program P”

Theorem [Turing]:   There is no program that solves 
the Halting Problem

Proof:  By contradiction.
Assume that a program H solving the Halting 
program does exist.  Then program D must exist

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x



H solves the halting problem implies that                              
H(CODE(D),x) is true iff D(x) halts,  H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(x) {
if (H(x,x) == true) {

while (true); // don’t halt
} else {

return; // halt
}

}

Does D(CODE(D)) halt?

Contradiction!The ONLY assumption was the program H exists 

so that assumption must have been false.



Where did the idea for creating D come from?

D halts on input code(P)  iff H(code(P),code(P)) outputs false
iff P doesn’t halt on input code(P)

public static void D(s) {
if (H(s,s) == true) {

while (true);  // don’t halt
} else {

return; // halt
}

}



Connection to diagonalization
<P1> <P2> <P3> <P4> <P5> <P6> .... Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

Al
l p

ro
gr

am
s P

Write <P> for CODE(P)

This listing of all programs really does exist 
since the set of all Java programs is countable

The goal of this “diagonal” argument is not 
to show that the listing is incomplete but 
rather to show that a “flipped” diagonal 
element is not in the listing



Connection to diagonalization
<P1> <P2> <P3> <P4> <P5> <P6> .... Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

Al
l p

ro
gr

am
s P

0     1     1     0    1     1    1     0      0      0     1  ...
1     1     0     1    0     1    1     0      1      1     1  ...
1     0     1     0    0     0    0     0      0      0     1  ...
0     1     1     0    1     0    1     1      0      1     0  ...
0     1     1     1    1     1    1     0      0      0     1  ...
1     1     0     0    0     1    1     0      1      1     1  ...
1     0     1     1    0     0    0     0      0      0     1  ...
0     1     1     1    1     0    1     1      0      1     0  ...
.     .   .  .   .    .   .   .   .    .    .       .  
.     .   .  .   .    .   .   .   .    .    .       .  

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

Write <P> for CODE(P)



Connection to diagonalization
<P1> <P2> <P3> <P4> <P5> <P6> .... Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

Al
l p

ro
gr

am
s P

0 1     1     0    1     1    1     0      0      0     1  ...
1     1 0     1    0     1    1     0      1      1     1  ...
1     0     1 0    0     0    0     0      0      0     1  ...
0     1     1     0 1     0    1     1      0      1     0  ...
0     1     1     1    1 1    1     0      0      0     1  ...
1     1     0     0    0     1 1     0      1      1     1  ...
1     0     1     1    0     0    0 0      0      0     1  ...
0     1     1     1    1     0    1     1 0      1     0  ...
.     .   .  .   .    .   .   .   .    .    .       .  
.     .   .  .   .    .   .   .   .    .    .       .  

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

1
0

0
1

0
0

1
0

Write <P> for CODE(P)

Want behavior of program 𝑫 to be 
like the flipped diagonal, so it can’t 
be in the list of all programs.  

Al
l p

ro
gr

am
s P

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever



Where did the idea for creating D come from?

D halts on input code(P)  iff H(code(P),code(P)) outputs false
iff P doesn’t halt on input code(P)

Therefore, for any program P,  D differs from P on input code(P)

public static void D(s) {
if (H(s,s) == true) {

while (true);  // don’t halt
} else {

return; // halt
}

}



The Halting Problem isn’t the only hard problem

• Can use the fact that the Halting Problem is 
undecidable to show that other problems are 
undecidable

General method (a “reduction”):
Prove that, if there were a program deciding B, then
there would be a program deciding the Halting Problem. 

“B decidable  →	 Halting Problem decidable”
Contrapositive:

“Halting Problem undecidable → B undecidable” 
Therefore, B is undecidable



A CSE 142 assignment

Students should write a Java program that:
– Prints “Hello” to the console
– Eventually exits

GradeIt, PracticeIt, etc. need to grade these
How do we write that grading program?

WE CAN’T:  THIS IS IMPOSSIBLE!



Another undecidable problem

• CSE 142 Grading problem: 
– Input:  CODE(Q)
– Output: 

True if Q outputs “HELLO” and exits
False if Q does not do that

• Theorem: The CSE 142 Grading is undecidable.
• Proof idea:  Show that, if there is a program T to decide 

CSE 142 grading, then there is a program H to decide the 
Halting Problem for code(P) and input x.   



Another undecidable problem
Theorem: The CSE 142 Grading is undecidable.

Proof:  Suppose there is a program T that decide CSE 142 
grading problem. Then, there is a program H to decide the 
Halting Problem for code(P) and input x by
• transform P (with input x) into the following program Q



Another undecidable problem
public class Q {
private static String x = “...”;

public static void main(String[] args) {
PrintStream out = System.out;
System.setOut(new PrintStream(

new WriterOutputStream(new StringWriter()));
System.setIn(new ReaderInputStream(new StringReader(x)));

P.main(args);

out.println(“HELLO”);
}

}

class P {
public static void main(String[] args) { ... }
...

}



Another undecidable problem
Theorem: The CSE 142 Grading is undecidable.

Proof:  Suppose there is a program T that decide CSE 142 
grading problem. Then, there is a program H to decide the 
Halting Problem for code(P) and input x by
• transform P (with input x) into the following program Q
• run T on code(Q)

– if it returns true, then P halted
must halt in order to print “HELLO”

– if it returns false, then P did not halt
program Q can’t output anything other than “HELLO”



More Reductions

- Can use undecidability of these problems to show that 
other problems are undecidable.

- For instance:
EQUIV(𝑃, 𝑄) : True if 𝑃 𝑥 and 𝑄(𝑥) have the same 

behavior for every input 𝑥
False otherwise



Rice’s theorem
Not every problem on programs is undecidable!
Which of these is decidable?
• Input CODE(P) and x

Output: true if P prints “ERROR” on input x
after less than 100 steps

false otherwise
• Input CODE(P) and x

Output: true    if P prints “ERROR” on input x
after more than 100 steps

false otherwise

Rice’s Theorem:
Any “non-trivial” property of the input-output behavior of
Java programs is undecidable.



Rice’s theorem
Not every problem on programs is undecidable!
Which of these is decidable?
• Input CODE(P) and x

Output: true if P prints “ERROR” on input x
after less than 100 steps

false otherwise
• Input CODE(P) and x

Output: true    if P prints “ERROR” on input x
after more than 100 steps

false otherwise

Rice’s Theorem (a.k.a. Compilers Suck Theorem - informal):
Any “non-trivial” property of the input-output behavior of
Java programs is undecidable.

ARE DIFFICULT



CFGs are complicated

We know can answer almost any question about REs
• Do two REs / DFAs recognize the same language?

But many problems about CFGs are undecidable!
• Do two CFGs generate the same language?
• Is there any string that two CFGs both generate?
– more general: “CFG intersection” problem

• Does a CFG generate every string?



Computers and algorithms

• Does Java (or any programming language) cover all possible 
computation? Every possible algorithm?

• There was a time when computers were people who did 
calculations on sheets paper to solve computational 
problems

• Computers as we known them arose from trying to 
understand everything these people could do.



Before Java

1930’s:
How can we formalize what algorithms are possible?

• Turing machines (Turing, Post)
– basis of modern computers

• Lambda Calculus (Church)
– basis for functional programming, LISP

• µ-recursive functions (Kleene)
– alternative functional programming basis



Turing machines

Church-Turing Thesis:
Any reasonable model of computation that includes all 

possible algorithms is equivalent in power to a Turing 
machine

Evidence
– Huge numbers of models based on radically 

different ideas turned out to be equivalent to TMs
– TM can simulate the physics of any machine that 

we could build (even quantum computers)



Turing machines

• Finite Control
– Brain/CPU  that has only a finite # of possible “states 

of mind”
• Recording medium
– An unlimited supply of blank “scratch paper” on 

which to write & read symbols, each chosen from a
finite set of possibilities

– Input also supplied on the scratch paper
• Focus of attention
– Finite control can only focus on a small portion of the 

recording medium at once
– Focus of attention can only shift a small amount at a 

time



Turing machines
• Recording medium

– An infinite read/write “tape” marked off into cells
– Each cell can store one symbol or be “blank”
– Tape is initially all blank except a few cells of the tape 

containing the input string
– Read/write head can scan one cell of the tape - starts on 

input

• In each step, a Turing machine
1. Reads the currently scanned cell
2. Based on current state and scanned symbol 

i. Overwrites symbol in scanned cell
ii. Moves read/write head left or right one cell
iii. Changes to a new state

• Each Turing Machine is specified by its finite set of rules



Turing machines

_ _ 1 1 0 1 1 _ _

_ 0 1

s1 (1, L, s3) (1, L, s4) (0, R, s2)

s2 (0, R, s1) (1, R, s1) (0, R, s1)

s3

s4



UW CSE’s Steam-Powered Turing Machine

Original in Sieg Hall stairwell



Turing machines

Ideal Java/C programs:
– Just like the Java/C you’re used to programming 

with, except you never run out of memory
• no OutOfMemoryError

Equivalent to Turing machines but easier to program:
– Turing machine definition is useful for breaking 

computation down into simplest steps
– We only care about high level so we use programs



Turing’s big idea part 1:  Machines as data

Original Turing machine definition:
– A different “machine” M for each task
– Each machine M is defined by a finite set of 

possible operations on finite set of symbols
– So... M has a finite description as a sequence of 

symbols, its “code”, which we denote <M>

You already are used to this idea with the notion of the 
program code, but this was a new idea in Turing’s time.



Turing’s big idea part 2:  A Universal TM

• A Turing machine interpreter U
– On input <M> and its input x,                                                    

U outputs the same thing as M does on input x
– At each step it decodes which operation M would have 

performed and simulates it.
• One Turing machine is enough
– Basis for modern stored-program computer

Von Neumann studied Turing’s UTM design

M
input
x

output
M(x) U

x output
M(x)<M>



Takeaway from undecidability

• You can’t rely on the idea of improved 
compilers and programming languages to 
eliminate all programming errors
– truly safe languages can’t possibly do general 

computation

• Document your code
– there is no way you can expect someone else 

to figure out what your program does with just 
your code; since in general it is provably 
impossible to do this!



What’s next?  ...after the final exam...

• Foundations II  (312)
– Fundamentals of counting, discrete probability, 

applications of randomness to computing, 
statistical algorithms and analysis

– Ideas critical for machine learning, algorithms

• Data Abstractions (332)
– Data structures, a few key algorithms, parallelism
– Brings programming and theory together
– Makes heavy use of induction and recursive defns



More Complexity Theory

Not just what can be computed at all...

How about what can be computed efficiently?

A rich, interesting, and important topic.
See CSE 431 for much more on that!



Final exam Monday, Review session Sunday

• Monday at either 2:30-4:20 (B) or 4:30-6:20 (A)
– CSE2 G20
– Bring your UW ID

• Comprehensive: Full probs only on topics that were covered 
in homework. May have small probs on other topics.
– May includes pre-midterm topics, e.g., formal proofs.
– Reference sheets will be included.

• Review session:  Sunday 1-3 pm in CSE2 G20
– Bring your questions !!


