Lecture 28: Undecidability

DEFINE DOES IT HALT (PROGRAM):

RETURN TRUE;

THE BIG PICTURE SOLUTION TO THE HALTING PROBLEM

Final exam Monday, Review session Sunday

- Monday at either 2:30-4:20 (B) or 4:30-6:20 (A)
 - CSE2 G20
 - Bring your **UW ID**
- **Comprehensive:** Full probs only on topics that were covered in homework. May have small probs on other topics.
 - May includes pre-midterm topics, e.g., formal proofs.
 - Reference sheets will be included.
- Review session: *Sunday* 1-3 pm in CSE2 G20
 - Bring your questions !!

A set **S** is **countable** iff we can order the elements of **S** as $S = \{x_1, x_2, x_3, ...\}$

Countable sets:

- $\mathbb N$ the natural numbers
- $\ensuremath{\mathbb{Z}}$ the integers
- ${\mathbb Q}$ the rationals
- Σ^* the strings over any finite Σ
- The set of all Java programs

Shown by "dovetailing" **Theorem** [Cantor]:

The set of real numbers between 0 and 1 is not countable.

Proof using "diagonalization".

Suppose, for a contradiction, that there is a list of them:

		1	2	3	4	5	6	7	8	9	
r_1	0.	5	0	0	0	0	0	0	0	•••	•••
r ₂	0.	3	3	3	3	3	3	3	3	•••	•••
r ₃	0.	1	4	2	8	5	7	1	4	•••	•••
r ₄	0.	1	4	1	5	9	2	6	5	•••	•••
r ₅	0.	1	2	1	2	2	1	2	2	•••	•••
r ₆	0.	2	5	0	0	0	0	0	0	•••	•••
r ₇	0.	7	1	8	2	8	1	8	2	•••	•••
r ₈	0.	6	1	8	0	3	3	9	4	•••	•••
•••	••••	•••	••••	••••	•••	•••	•••	•••	•••	•••	

Suppose, for a contradiction, that there is a list of them:

		1	2	3	4	5	6	7	8	9	•••
r_1	0.	5	0	0	0	0	0	0	0	•••	•••
r ₂	0.	3	3	3	3	3	3	3	3		•••
r ₃	0.	1	4	2	8	5	7	1	4	•••	•••
r ₄	0.	1	4	1	5	9	2	6	5	•••	•••
r ₅	0.	1	2	1	2	2	1	2	2	•••	•••
r ₆	0.	2	5	0	0	0	0	0	0	•••	•••
r ₇	0.	7	1	8	2	8	1	8	2	•••	•••
r ₈	0.	6	1	8	0	3	3	9	4	•••	•••
•••	••••	•••		••••	•••			•••	•••	•••	

Suppose, for a contradiction, that there is a list of them:

r ₁ r ₂	0. 0.	1 5 ¹ 3	2 0 3 ⁵	3 0 3	4 0 3	Flipping rule: If digit is 5, make it 1. If digit is not 5, make it 5.								
r ₃	0.	1	4	2 ⁵	8	5	7	1	4	•••				
r ₄	0.	1	4	1	5 ¹	9	2	6	5	•••	•••			
r ₅	0.	1	2	1	2	2 ⁵	1	2	2	•••	•••			
r ₆	0.	2	5	0	0	0	0 ⁵	0_	0	•••	•••			
r ₇	0.	7	1	8	2	8	1	8	2	•••	•••			
r ₈	0.	6	1	8	0	3	3	9	<mark>4</mark> 5	•••	•••			
•••	••••	•••	••••	••••	•••	•••	•••	•••	•••	•••				

Suppose, for a contradiction, that there is a list of them:

r ₁ r ₂	0. 0.	1 5 1 3	2 0 3 ⁵	3 0 3	4 0 3	If dig	ping ru git is 5 , git is no	make		t 5 .	
r ₃	0.	1	4	2 ⁵	8	5	7	1	4	•••	
r ₄	0.	1	4	1	5 ¹	9	2	6	5	•••	•••
r ₅	0.	1	2	1	2	2 ⁵	1	2	2	•••	•••
r ₆	0.	2	5	0	0	0	0 ⁵	0	0	•••	•••
r ₇	0.	7	1	8	2	8	1	8	2	•••	•••

If diagonal element is $0. x_{11} x_{22} x_{33} x_{44} x_{55} \cdots$ then let's call the flipped number $0. \hat{x}_{11} \hat{x}_{22} \hat{x}_{33} \hat{x}_{44} \hat{x}_{55} \cdots$

It cannot appear anywhere on the list!

Suppose, for a contradiction, that there is a list of them:

r ₁ r ₂	0. 0.	1 5 1 3	2 0 3 ⁵	3 0 3	4 0 3	If dig	ping ru git is 5 , git is no	make		t <mark>5</mark> .	
r ₃	0.	1	4	2 ⁵	8	5	7	1	4	•••	
r ₄	0.	1	4	1	5 ¹	9	2	6	5	•••	•••
r ₅	0.	1	2	1	2	2 ⁵	1	2	2	•••	•••
r ₆	0.	2	5	0	0	0	0 ⁵	0	0	•••	•••
r 7	0.	7	1	8	2	8	1	8	2	•••	•••

So, the list is incomplete, which is a contradiction.

Thus, the real numbers between 0 and 1 are not countable: "uncountable"

- The set of rational numbers in [0,1) also have decimal representations like this
 - The only difference is that rational numbers always have repeating decimals in their expansions 0.33333... or .25000000...
- So why wouldn't the same proof show that this set of rational numbers is uncountable?
 - Given any listing we could create the flipped diagonal number *d* as before
 - However, *d* would not have a repeating decimal expansion and so wouldn't be a rational #

It would not be a "missing" number, so no contradiction.

The set of all functions $f : \mathbb{N} \rightarrow \{0, ..., 9\}$ is uncountable

The set of all functions $f : \mathbb{N} \rightarrow \{0, ..., 9\}$ is uncountable

Supposed listing of all the functions:

	1	2	3	4	5	6	7	8	9	•••
f ₁	5	0	0	0	0	0	0	0	•••	•••
f ₂	3	3	3	3	3	3	3	3	•••	•••
f ₃	1	4	2	8	5	7	1	4	•••	•••
f ₄	1	4	1	5	9	2	6	5	•••	
f ₅	1	2	1	2	2	1	2	2	•••	•••
f ₆	2	5	0	0	0	0	0	0	•••	•••
f ₇	7	1	8	2	8	1	8	2	•••	•••
f ₈	6	1	8	0	3	3	9	4	•••	•••
•••	•••	••••	••••	•••	•••	•••	•••	•••	•••	

The set of all functions $f : \mathbb{N} \rightarrow \{0, ..., 9\}$ is uncountable

Supposed listing of all the functions:

	1	2	3	4	Flippi	ng rule				
f ₁	5 ¹	0	0	0				D (n)	= 1	
f ₂	3	3 ⁵	3	3	If f _n(
f ₃	1	4	2 ⁵	8	5	7	1	4	•••	
f ₄	1	4	1	5 ¹	9	2	6	5	•••	•••
f ₅	1	2	1	2	2 ⁵	1	2	2	•••	•••
f ₆	2	5	0	0	0	0 ⁵	0	0	•••	•••
f ₇	7	1	8	2	8	1	8	2	•••	•••
f ₈	6	1	8	0	3	3	9	4 ⁵	•••	•••
•••	•••	••••	••••	•••	•••	•••	•••	•••	•••	

The set of all functions $f : \mathbb{N} \to \{0, \dots, 9\}$ is uncountable

Supposed listing of all the functions:

	1	2	3	4	Flippiı	ng rule	9:			
f ₁	5 ¹	0	0	0	If $f_n(1)$	-		D (n)	= 1	
f ₂	3	3 ⁵	3	3	If $f_n(1)$	$n) \neq !$	5, set	D(n)	= 5	J
f ₃	1	4	2 ⁵	8	5	7	1	4	•••	
f ₄	1	4	1	5 ¹	9	2	6	5	•••	•••
f ₅	1	2	1	2	2 ⁵	1	2	2	•••	•••
f ₆	2	5	0	0	0	0 ⁵	0	0	•••	•••
f ₇	7	1	8	2	8	1	8	2	•••	•••

For all n, we have $D(n) \neq f_n(n)$. Therefore $D \neq f_n$ for any n and the list is incomplete! $\Rightarrow \{f \mid f : \mathbb{N} \rightarrow \{0, 1, \dots, 9\}\}$ is **not** countable

Uncomputable functions

We have seen that:

- The set of all (Java) programs is countable
- The set of all functions $f : \mathbb{N} \to \{0, \dots, 9\}$ is not countable

So: There must be some function $f : \mathbb{N} \to \{0, ..., 9\}$ that is not computable by any program!

Recall our language picture

Uncomputable functions

Interesting... maybe.

Can we come up with an explicit function that is uncomputable?

A "Simple" Program

<pre>public static void collatz(n) {</pre>	11
if (n == 1) {	34
return 1;	17
}	52
if $(n \% 2 == 0) \{$	26
return collatz(n/2) }	13
<pre>selse {</pre>	40
return collatz(3*n + 1)	20
}	10
}	5
	16
What does this program do?	8
on n=11?	4
on n=1000000000000000000001?	2
	1

A "Simple" Program

```
public static void collatz(n) {
   if (n == 1) {
       return 1;
   }
   if (n % 2 == 0) {
       return collatz(n/2)
   }
   else {
       return collatz(3*n + 1)
   }
}
                                Nobody knows whether or not
                                this program halts on all inputs!
What does this program do?
```

```
... on n=11?
```

We're going to be talking about Java code.

CODE(P) will mean "the code of the program P"

So, consider the following function:
 public String P(String x) {
 return new String(Arrays.sort(x.toCharArray());
 }

What is **P(CODE(P))**?

"((((())))..;AACPSSaaabceeggghiiiilnnnnnooprrrrrrrrssstttttuuwxxyy{}"

CODE(P) means "the code of the program **P**"

The Halting Problem

Given: - CODE(**P**) for any program **P** - input **x**

Output: true if P halts on input x false if P does not halt on input x

Undecidability of the Halting Problem

CODE(P) means "the code of the program **P**"

The Halting Problem

Given: - CODE(**P**) for any program **P** - input **x**

Output: true if P halts on input x false if P does not halt on input x

Theorem [Turing]: There is no program that solves the Halting Problem

Suppose that H is a Java program that solves the Halting problem.

Suppose that H is a Java program that solves the Halting problem.

Then we can write this program:

```
public static void D(String s) {
    if (H(s,s) == true) {
        ...
    } else {
        ...
    }
}
public static bool H(String s, String x) { ... }
```

Does D(CODE(D)) halt?

public static void D(s) { if (H(s,s) == true) { while (true); // don't halt } else { }

```
Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that
H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn't halt
```

```
Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that
H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn't halt
```

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that
H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn't halt

Suppose that D(CODE(D)) doesn't halt. Then, by definition of H it must be that H(CODE(D), CODE(D)) is false Which by the definition of D means D(CODE(D)) halts

- We proved that there is no computer program that can solve the Halting Problem.
 - There was nothing special about Java*

[Church-Turing thesis]

 This tells us that there is no compiler that can check our programs and guarantee to find any infinite loops they might have.

Terminology

- With state machines, we say that a machine "recognizes" the language L iff
 - it accepts $x \in \Sigma^*$ if $x \in L$
 - it rejects $x \in \Sigma^*$ if $x \notin L$
- With Java programs / general computation, we say that the computer "decides" the language L iff
 - it halts with output 1 on input $x \in \Sigma^*$ if $x \in L$
 - it halts with output 0 on input $x \in \Sigma^*$ if $x \notin L$

(difference is the possibility that machine doesn't halt)

• If no machine decides L, then L is "undecidable"

Where did the idea for creating **D** come from?

D halts on input code(P) iff H(code(P),code(P)) outputs false iff P doesn't halt on input code(P)

	Con	nec	tion	to d	Write < P > for CODE(P)									
-		<p<sub>1></p<sub>	<p<sub>2></p<sub>	<p<sub>3></p<sub>	<p<sub>4></p<sub>	<p<sub>5></p<sub>	<p<sub>6></p<sub>		Some possible inputs x					
	P ₁	0	1	1	0	1	1	1	0	0	0	1		
	P_2	1	1	0	1	0	1	1	0	1	1	1		
	P_3	1	0	1	0	0	0	0	0	0	0	1		
P	P_4	0	1	1	0	1	0	1	1	0	1	0		
am	P ₅	0	1	1	1	1	1	1	0	0	0	1		
All programs	P_6	1	1	0	0	0	1	1	0	1	1	1		
II pr	P ₇	1	0	1	1	0	0	0	0	0	0	1		
A	P_8	0	1	1	1	1	0	1	1	0	1	0		
	P ₉	-			•		-			•				
	•	-			•		•			•				
	•		(P,x) er		s 1 if p 0 if it				on inpu	ut x			

	Con	nect	ion	to d	iago	ion	Write < P > for CODE(P)					
-		<p<sub>1></p<sub>	<p<sub>2></p<sub>	<p<sub>3></p<sub>	<p<sub>4></p<sub>	<p<sub>5></p<sub>	<p<sub>6></p<sub>		Some	e possi	<mark>ble in</mark>	outs x
	P_1 P_2 P_3	0 ¹ 1 1	1 1 ⁰ 0	1 0 1 <mark>0</mark>	0 1 0	1 0 0	like t	he flip	oped d	f progra iagona Il progr	l, so it (
All programs P	P ₄ P ₅ P ₆ P ₇ P ₈ P ₉	0 0 1 1 0	1 1 0 1	1 1 0 1 1	0 ¹ 1 0 1 1	1 1 0 0 1	0 1 1 0 0	1 1 0 ¹ 1	0 0 0 1 <mark>0</mark>	0 1 0 0	0 1 0 1	0 1 1 0
	•		 (F	• • •,x) er	-	-	•	am P forev		on inp	ut x	

Where did the idea for creating **D** come from?

```
public static void D(s) {
    if (H(s,s) == true) {
        while (true); /* don't halt */
    }
    else {
        return; /* halt */
    }
}
```

D halts on input code(P) iff H(code(P),code(P)) outputs false iff P doesn't halt on input code(P)

Therefore, for any program P, **D** differs from P on input code(P)