Lecture 25: NFAs and their relation to REs & DFAs
Recall: DFAs

- **States**
- **Transitions on input symbols**
- **Start state and final states**
- The “language recognized” by the machine is the set of strings that reach a final state from the start state.

<table>
<thead>
<tr>
<th>Old State</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s₀</td>
<td>s₀</td>
<td>s₁</td>
</tr>
<tr>
<td>s₁</td>
<td>s₀</td>
<td>s₂</td>
</tr>
<tr>
<td>s₂</td>
<td>s₀</td>
<td>s₃</td>
</tr>
<tr>
<td>s₃</td>
<td>s₃</td>
<td>s₃</td>
</tr>
</tbody>
</table>
Recall: DFAs

• Each machine designed for strings over some fixed alphabet Σ.

• Must have a transition defined from each state for every symbol in Σ.

<table>
<thead>
<tr>
<th>Old State</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_0</td>
<td>s_1</td>
</tr>
<tr>
<td>s_1</td>
<td>s_0</td>
<td>s_2</td>
</tr>
<tr>
<td>s_2</td>
<td>s_0</td>
<td>s_3</td>
</tr>
<tr>
<td>s_3</td>
<td>s_3</td>
<td>s_3</td>
</tr>
</tbody>
</table>
Last Time: Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state labeled by each symbol—can have 0 or >1
 - Also can have edges labeled by empty string ε

- **Definition:** x is in the language recognized by an NFA if and only if some valid execution of the machine gets to an accept state

![Diagram of NFA]
Three ways of thinking about NFAs

• Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)

• Outside observer: Is there a path labeled by x from the start state to some accepting state?

• Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
Path Labels

Def: The label of path $v_0, v_1, ..., v_n$ is the concatenation of the labels of the edges $(v_0, v_1), (v_1, v_2), ..., (v_{n-1}, v_n)$

Example: The label of path s_0, s_1, s_2, s_0, s_0 is 1100
Deterministic Finite Automata (DFA)

- **Def:** x is in the language recognized by an DFA if and only if x labels a path from the start state to some final state.

- **Path** $v_0, v_1, ..., v_n$ with $v_0 = s_0$ and label x describes a correct simulation of the DFA on input x.
 - i-th step must match the i-th character of x.

![DFA Diagram](image-url)
Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled by symbols (like DFA) but
 – Not required to have exactly 1 edge out of each state labeled by each symbol—can have 0 or >1
 – Also can have edges labeled by empty string ε

• **Definition:** x is in the language recognized by an NFA if and only if x labels **some path** from the start state to an accepting state
Three ways of thinking about NFAs

• Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)

• Outside observer: Is there a path labeled by x from the start state to some accepting state?

• Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
Compare with the smallest DFA
Parallel Exploration view of an NFA

Input string 0101100
Summary of NFAs

• Generalization of DFAs
 – drop two restrictions of DFAs
 – every DFA is an NFA

• Seem to be more powerful
 – designing is easier than with DFAs

• Seem related to regular expressions
The story so far...

REs \subseteq CFGs

DFAs \subseteq NFAs
Theorem: For any set of strings (language) A described by a regular expression, there is an NFA that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...
Regular Expressions over Σ

• **Basis:**
 - ϵ is a regular expression
 - a is a regular expression for any $a \in \Sigma$

• **Recursive step:**
 - If A and B are regular expressions then so are:
 - $A \cup B$
 - AB
 - A^*
Base Case

- Case ε:

- Case a:
Base Case

• Case ɛ:

• Case a:
Base Case

- Case ε:

- Case a:
Inductive Hypothesis

• Suppose that for some regular expressions A and B there exist NFAs N_A and N_B such that N_A recognizes the language given by A and N_B recognizes the language given by B.
Inductive Step

Case $A \cup B$:
Inductive Step

Case $A \cup B$:
Inductive Step

Case AB:
Inductive Step

Case AB:
Inductive Step

Case A*

\[N_A \]
Inductive Step

Case A*
Build an NFA for \((01 \cup 1)^*0\)
Solution

$$(01 \cup 1)^*0$$
The story so far...

\[
\begin{array}{c}
\text{REs} \subseteq \text{CFGs} \\
\cap \\
\text{DFAs} \subseteq \text{NFAs}
\end{array}
\]
NFAs and DFAs

Every DFA is an NFA
- DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?
NFAs and DFAs

Every DFA is an NFA
 – DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language
Three ways of thinking about NFAs

• Outside observer: Is there a path labeled by x from the start state to some final state?

• Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)

• Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
Parallel Exploration view of an NFA

Input string 0101100
Conversion of NFAs to a DFAs

• Construction Idea:
 – The DFA keeps track of ALL states reachable in the NFA along a path labeled by the input so far
 (Note: not all *paths*; all *last states* on those paths.)
 – There will be one state in the DFA for each *subset* of states of the NFA that can be reached by some string
Conversion of NFAs to a DFAs

New start state for DFA

– The set of all states reachable from the start state of the NFA using only edges labeled ε
Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of states of the NFA and each symbol s

- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
 - starting from some state in S, then
 - following one edge labeled by s, and
 - then following some number of edges labeled by ε
- T will be \emptyset if no edges from S labeled s exist
Conversion of NFAs to a DFAs

Final states for the DFA

– All states whose set contain some final state of the NFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA

NFA

DFA

\[a, b \]
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA
The story so far...

\[\text{REs} \subseteq \text{CFGs} \]

\[\text{DFAs} = \text{NFAs} \]
Regular expressions \subseteq NFAs \equiv DFAs

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Thus, we could now implement a RegExp library

- most RegExp libraries actually simulate the NFA
- (even better: one can combine the two approaches: apply DFA minimization lazily while simulating the NFA)
The story so far...

- REs ⊆ CFGs
- DFAs ⊆ NFAs

Is this ⊆ really “=” or “⊄”?
Regular expressions ≡ NFAs ≡ DFAs

Theorem: For any NFA, there is a regular expression that accepts the same language

Corollary: A language is recognized by a DFA (or NFA) if and only if it has a regular expression

You need to know these facts

– the construction for the Theorem is sketched below but you will not be tested on it
New Machinery: Generalized NFAs

• Like NFAs but allow
 – parallel edges (between the same pair of states)
 – regular expressions as edge labels
 NFAs already have edges labeled ε or a

• Machine can follow an edge labeled by A by reading a string of input characters in the language of A
 – (if A is a or ε, this matches the original definition, but we now allow REs built with recursive steps.)
New Machinery: Generalized NFAs

• Like NFAs but allow
 – parallel edges
 – regular expressions as edge labels
 NFAs already have edges labeled ε or a

• The label of a path is now the concatenation of the regular expressions on those edges, making it a regular expression

• Def: A string x is accepted by a generalized NFA iff there is a path from start to final state labeled by a regular expression whose language contains x
Construction Idea

Add new start state and final state

Then delete the original states one by one, adding edges to keep the same language, until the graph looks like:

![Diagram](image-url)
Starting from an NFA

Then delete the original states one by one, adding edges to keep the same language, until the graph looks like:

Final graph has only one path to the accepting state, which is labeled by A, so it accepts iff x is in the language of A

Thus, A is a regular expression with the same language as the original NFA.
Only two simplification rules

• **Rule 1:** For any two states q_1 and q_2 with parallel edges (possibly $q_1=q_2$), replace

If the machine would have used the edge labeled A by consuming an input x in the language of A, it can instead use the edge labeled $A\cup B$.

Furthermore, this new edge does not allow transitions for any strings other than those that matched A or B.
Only two simplification rules

- **Rule 2**: Eliminate non-start/accepting state q_3 by creating direct edges that skip q_3

For every pair of states q_1, q_2 (even if $q_1=q_2$)

Any path from q_1 to q_2 would have to match AB^nC for some n (the number of times the self loop was used), so the machine can use the new edge instead. New edge *only* allows strings that were allowed before.
Construction Overview

Add new start state and final state

While the box contains some state s:
for all states r, t with (r, s) and (s, t) in E:
create a direct edge (r, t) by Rule 2
delete s (no longer needed)
merge all parallel edges by Rule 1
Construction Overview

While the box contains some state s: for all states r, t with (r, s) and (s, t) in E: create a direct edge (r, t) by Rule 2 delete s (no longer needed) merge all parallel edges by Rule 1

When the loop exits, the graph looks like this:

A is a regular expression with the same language as the original NFA.
Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

- Accept strings from \{0,1,2\}^* where the digits mod 3 sum of the digits is 0

![DFA Diagram]
Splicing out a state t_1

Create direct edges between neighbors of t_1 (so that we can delete it afterward)
Splicing out a state t_1

Regular expressions to add to edges

$t_0 \rightarrow t_1 \rightarrow t_0 : 10^*2$
$t_0 \rightarrow t_1 \rightarrow t_2 : 10^*1$
$t_2 \rightarrow t_1 \rightarrow t_0 : 20^*2$
$t_2 \rightarrow t_1 \rightarrow t_2 : 20^*1$
Splicing out a state t_1

Delete t_1 now that it is redundant

$t_0 \rightarrow t_1 \rightarrow t_0 : 10^*2$
$t_0 \rightarrow t_1 \rightarrow t_2 : 10^*1$
$t_2 \rightarrow t_1 \rightarrow t_0 : 20^*2$
$t_2 \rightarrow t_1 \rightarrow t_2 : 20^*1$
Splicing out a state t_1

Create direct edges between neighbors of t_2 (so that we can delete it afterward)
Splicing out a state t_1

Regular expressions to add to edges

R_1: $0 \cup 10^*2$
R_2: $2 \cup 10^*1$
R_3: $1 \cup 20^*2$
R_4: $0 \cup 20^*1$
Splicing out state t_2 (and then t_0)

Delete t_2 now that it is redundant

$R_1: \ 0 \cup 10*2$
$R_2: \ 2 \cup 10*1$
$R_3: \ 1 \cup 20*2$
$R_4: \ 0 \cup 20*1$

$R_5: \ R_1 \cup R_2 R_4 * R_3$

Diagram:
- Start state s transitions to t_0 on ε.
- t_0 loops back to itself on ε.
- t_0 transitions to final state f on ε.

Splicing out state t_2 (and then t_0)

Create direct (s,f) edge so we can delete t_0

\[
\begin{align*}
R_1 & : 0 \cup 10^*2 \\
R_2 & : 2 \cup 10^*1 \\
R_3 & : 1 \cup 20^*2 \\
R_4 & : 0 \cup 20^*1 \\
R_5 & : R_1 \cup R_2 R_4^* R_3
\end{align*}
\]
Splicing out state t_2 (and then t_0)

Regular expressions to add to edges

R_1: $0 \cup 10^*2$
R_2: $2 \cup 10^*1$
R_3: $1 \cup 20^*2$
R_4: $0 \cup 20^*1$
R_5: $R_1 \cup R_2 R_4^* R_3$

$t_0 \xrightarrow{R_5} t_1 \xrightarrow{R_5} t_0$: R_5^*
Splicing out state \(t_2 \) (and then \(t_0 \))

Delete \(t_0 \) now that it is redundant

\[
R_1: \ 0 \cup 10^*2 \\
R_2: \ 2 \cup 10^*1 \\
R_3: \ 1 \cup 20^*2 \\
R_4: \ 0 \cup 20^*1 \\
R_5: \ R_1 \cup R_2R_4^*R_3 \\
R_6: \ R_5^* \\
\]

Graph:
- \(s \) is the start state.
- \(f \) is the finish state.
- \(R_6 \) is the transition from \(s \) to \(f \).
Splicing out state t_2 (and then t_0)

Regular expressions to add to edges

\begin{align*}
R_1 &: 0 \cup 10^*2 \\
R_2 &: 2 \cup 10^*1 \\
R_3 &: 1 \cup 20^*2 \\
R_4 &: 0 \cup 20^*1 \\
R_5 &: R_1 \cup R_2 R_4^* R_3 \\
R_6 &: R_5^* \\
\end{align*}

Final regular expression: $R_6 =$

\[(0 \cup 10^*2 \cup (2 \cup 10^*1)(0 \cup 20^*1)^*(1 \cup 20^*2))^*\]
The story so far...

REs \subseteq \text{CFGs}

\equiv

\text{DFAs} = \text{NFAs}
The story so far...

Next time: Is this \subseteq really “=“ or “\subseteq”?