
CSE 311: Foundations of Computing

Lecture 23: Finite State Machines

Last time: Relations & Composition

Let A and B be sets,
A binary relation from A to B is a subset of A ´ B

Let A be a set,
A binary relation on A is a subset of A ´ A

Last time: Directed Graphs

G = (V, E) V – vertices
E – edges, ordered pairs of vertices

Last time: Relation Composition

The composition of relation 𝑹 and 𝑺, 𝑹 ∘ 𝑺 is the
relation defined by:

𝑹 ∘ 𝑺 = { (a, c) | $ b such that (a,b)Î 𝑹 and (b,c)Î 𝑺}

Last time: Relational Composition using Digraphs

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑺

1

3

2 1

3

2

Relational Composition using Digraphs

If 𝑹 = 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑹

1

3

2 1

3

2

𝑎, 𝑐 ∈ 𝑅 ∘ 𝑅 = 𝑅! iff ∃𝑏 (𝑎, 𝑏 ∈ 𝑅 ⋀ (𝑏, 𝑐) ∈ 𝑅)
iff ∃𝑏 such that a, b, c is a path

Last time: Paths in Relations and Graphs

Def: The length of a path in a graph is the number of
edges in it (counting repetitions if edge used > once).

Elements of 𝑹𝟎 correspond to paths of length 0.
Elements of 𝑹𝟏 = 𝑹 are paths of length 1.
Elements of 𝑹𝟐 are paths of length 2.
...

Last time: Paths in Relations and Graphs

Let 𝑹 be a relation on a set 𝑨.
There is a path of length 𝒏 from a to b in the digraph
for 𝑹 if and only if (a,b) Î 𝑹𝒏

Def: The length of a path in a graph is the number of
edges in it (counting repetitions if edge used > once).

Last time: Connectivity In Graphs

Let 𝑹 be a relation on a set 𝑨. The connectivity
relation 𝑹∗ consists of the pairs (𝑎,𝑏) such that there is
a path from 𝑎 to 𝑏 in 𝑹.

Note: Rosen text uses the wrong definition of this quantity.
What the text defines (ignoring k=0) is usually called R+

Def: Two vertices in a graph are connected iff there is a
path between them.

𝑹∗ =#
,-.

/

𝑹,

Last time: Properties of Relations via Graphs

Let R be a relation on A.

R is reflexive iff (a,a) Î R for every a Î A

R is symmetric iff (a,b) Î R implies (b, a)Î R

R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R

R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R

at every node

or

or or

Transitive-Reflexive Closure

Add the minimum possible number of edges to make the
relation transitive and reflexive.

Transitive-Reflexive Closure

Relation with the minimum possible number of extra edges to
make the relation both transitive and reflexive.

The transitive-reflexive closure of a relation 𝑹 is the
connectivity relation 𝑹*

𝑛-ary Relations

Let 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏 be sets. An 𝒏-ary relation on
these sets is a subset of 𝑨𝟏´𝑨𝟐´⋯ ´ 𝑨𝒏.

Relational Databases

Student_Name ID_Number Office GPA

Knuth 328012098 022 4.00

Von Neuman 481080220 555 3.78

Russell 238082388 022 3.85

Einstein 238001920 022 2.11

Newton 1727017 333 3.61

Karp 348882811 022 3.98

Bernoulli 2921938 022 3.21

STUDENT

Back to Languages

Selecting strings using labeled graphs as “machines”

start

zero

one

0

1

1

0

0

1

Finite State Machines

start

zero

one

0

1

1

0

0

1

“Start
here”

“If I get this symbol, follow the
arrow…” The circles are called “states”

We’re only in a single state at
any point in time…

The “double circle” means “the
input is good if it ends here”

Which strings does this machine say are OK?

start

zero

one

0

1

1

0

0

1

Which strings does this machine say are OK?

start

zero

one

0

1

1

0

0

1

The set of all binary
strings that end in 0

Finite State Machines

• States
• Transitions on input symbols
• Start state and final states
• The “language recognized” by the machine is the

set of strings that reach a final state from the start

s0 s2 s3s1
111

0,1

0

0

0Old State 0 1
s0 s0 s1
s1 s0 s2
s2 s0 s3
s3 s3 s3

Old State 0 1
s0 s0 s1
s1 s0 s2
s2 s0 s3
s3 s3 s3

Finite State Machines

• Each machine designed for strings over some
fixed alphabet Σ.

• Must have a transition defined from each state for
every symbol in Σ.

s0 s2 s3s1
111

0,1

0

0

0

Old State 0 1
s0 s0 s1
s1 s0 s2
s2 s0 s3
s3 s3 s3

What language does this machine recognize?

s0 s2 s3s1
111

0,1

0

0

0

Old State 0 1
s0 s0 s1
s1 s0 s2
s2 s0 s3
s3 s3 s3

What language does this machine recognize?

s0 s2 s3s1
111

0,1

0

0

0

The set of all binary strings that contain 111
or don’t end in 1

Applications of FSMs (a.k.a. Finite Automata)

• Implementation of regular expression matching in
programs like grep

• Control structures for sequential logic in digital
circuits

• Algorithms for communication and cache-
coherence protocols
– Each agent runs its own FSM

• Design specifications for reactive systems
– Components are communicating FSMs

Applications of FSMs (a.k.a. Finite Automata)

• Formal verification of systems
– Is an unsafe state reachable?

• Computer games
– FSMs implement non-player characters

• Minimization algorithms for FSMs can be
extended to more general models used in
– Text prediction
– Speech recognition

Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

s0 s1

Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

s0 s1

2 0,10,1

2

Strings over {0, 1, 2}

M2: Strings where the sum of digits mod 3 is 0

FSM as abstraction of Java code

boolean sumCongruentToZero(String str) {
int sum = 0;

for (int i = 0; i < str.length(); i++) {

if (str.charAt(i) == '2’)

sum = (sum + 2) % 3;
if (str.charAt(i) == '1’)

sum = (sum + 1) % 3;

}
return sum == 0;

}

Strings over {0, 1, 2}

M2: Strings where the sum of digits mod 3 is 0

t0 t2

t1

Strings over {0, 1, 2}

M2: Strings where the sum of digits mod 3 is 0

t0 t2

t1

0

0

0
1 1

1

2 2

2

FSM as abstraction of Java code

boolean sumCongruentToZero(String str) {
int sum = 0; // state

for (int i = 0; i < str.length(); i++) {

if (str.charAt(i) == '2’)

sum = (sum + 2) % 3;
if (str.charAt(i) == '1’)

sum = (sum + 1) % 3;

}
return sum == 0;

}
FSMs can model Java code with

a finite number of fixed-size variables
that makes one pass through input

FSM to Java code

int[][] TRANSITION = {...};

boolean sumCongruentToZero(String str) {

int state = 0;

for (int i = 0; i < str.length(); i++) {
int d = str.charAt(i) - ‘0’;

state = TRANSITION[state][d];

}
return state == 0;

}

Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

M2: Strings where the sum of digits mod 3 is 0

t0 t2

t1

0

0

0
1 1

1

2 2

2

s0 s1

2 0,10,1

2

Strings over {0,1,2} w/ even number of 2’s AND mod 3 sum 0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

Strings over {0,1,2} w/ even number of 2’s AND mod 3 sum 0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

Strings over {0,1,2} w/ even number of 2’s OR mod 3 sum 0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

Strings over {0,1,2} w/ even number of 2’s XOR mod 3 sum 0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

The set of binary strings with a 1 in the 3rd position from the start

The set of binary strings with a 1 in the 3rd position from the start

s0 s2 As1
10,10,1

0,1

R

0
0,1

The set of binary strings with a 1 in the 3rd position from the end

3 bit shift register

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

“Remember the last three bits”

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

10

00 01 10 11

11

1

0

0 0

0 0 0 01

1

1
1

The set of binary strings with a 1 in the 3rd position from the end

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

The set of binary strings with a 1 in the 3rd position from the end

The beginning versus the end

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00
0 1

0

0

00

s0 s2 As1
10,10,1

0,1

R

0 0,1

Adding Output to Finite State Machines

• So far we have considered finite state
machines that just accept/reject strings
– called “Deterministic Finite Automata” or DFAs

• Now we consider finite state machines
with output
– These are the kinds used as controllers

Vending Machine

Enter 15 cents in dimes or nickels
Press S or B for a candy bar

Vending Machine, v0.1

0 5 10 15

D D

N N N, D

B, S

Basic transitions on N (nickel), D (dime), B (butterfinger), S (snickers)

Vending Machine, v0.2

0’
[B]

5 10

15

Adding output to states: N – Nickel, S – Snickers, B – Butterfinger

15’
[N]

0

0”
[S]

N

N

N

N

N

B

D

D

D

D

D B

S

S

Vending Machine, v1.0

0’
[B]

5 10

15

Adding additional “unexpected” transitions to cover all symbols for each state

15’
[N]

0

0”
[S]

N

N

N

N

N

B

D

D

D

D

D
B

S

S

15”
[D]S

B

B,S

B,S

B,S

B,S B,S

N

N

N

D

D

D

