CSE 311: Foundations of Computing

Lecture 23: Finite State Machines

Let A and B be sets,

A binary relation from A to B is a subset of $A \times B$

Let A be a set,

A binary relation on A is a subset of $A \times A$

Last time: Directed Graphs

- G = (V, E) V vertices
 - E edges, ordered pairs of vertices

The composition of relation R and S, $R \circ S$ is the relation defined by:

 $R \circ S = \{ (a, c) \mid \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in S \}$

Last time: Relational Composition using Digraphs

If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $R \circ S$

2

Relational Composition using Digraphs

If $R = \{(1, 2), (2, 1), (1, 3)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $R \circ R$

 $(a,c) \in R \circ R = R^2$ iff $\exists b \ ((a,b) \in R \land (b,c) \in R)$ iff $\exists b$ such that a, b, c is a path Def: The **length** of a path in a graph is the number of edges in it (counting repetitions if edge used > once).

Elements of R^0 correspond to paths of length 0. Elements of $R^1 = R$ are paths of length 1. Elements of R^2 are paths of length 2.

...

Def: The **length** of a path in a graph is the number of edges in it (counting repetitions if edge used > once).

Let **R** be a relation on a set **A**.

There is a path of length n from a to b in the digraph for R if and only if $(a,b) \in R^n$

Def: Two vertices in a graph are **connected** iff there is a path between them.

Let **R** be a relation on a set **A**. The **connectivity** relation \mathbf{R}^* consists of the pairs (a,b) such that there is a path from a to b in **R**.

$$\boldsymbol{R}^* = \bigcup_{k=0}^{\infty} \boldsymbol{R}^k$$

Note: Rosen text uses the wrong definition of this quantity. What the text defines (ignoring k=0) is usually called R⁺

Last time: Properties of Relations via Graphs

Let R be a relation on A.

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$

C → at every node

R is **symmetric** iff $(a,b) \in R$ implies $(b, a) \in R$

• • or •

R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$

or or or 🛀

R is **transitive** iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Transitive-Reflexive Closure

Add the **minimum possible** number of edges to make the relation transitive and reflexive.

Transitive-Reflexive Closure

Relation with the **minimum possible** number of **extra edges** to make the relation both transitive and reflexive.

The **transitive-reflexive closure** of a relation R is the connectivity relation R^*

Let $A_1, A_2, ..., A_n$ be sets. An *n*-ary relation on these sets is a subset of $A_1 \times A_2 \times \cdots \times A_n$.

Relational Databases

STUDENT

Student_Name	ID_Number	Office	GPA
Knuth	328012098	022	4.00
Von Neuman	481080220	555	3.78
Russell	238082388	022	3.85
Einstein	238001920	022	2.11
Newton	1727017	333	3.61
Karp	348882811	022	3.98
Bernoulli	2921938	022	3.21

Selecting strings using labeled graphs as "machines"

Which strings does this machine say are OK?

Which strings does this machine say are OK?

Finite State Machines

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

Old State	0	1
s ₀	s ₀	s ₁
S ₁	s ₀	S ₂
S ₂	s ₀	S ₃
S ₃	S ₃	S ₃

- Each machine designed for strings over some fixed alphabet Σ .
- Must have a transition defined from each state for every symbol in Σ .

Old State	0	1
s ₀	s ₀	s ₁
s ₁	s ₀	s ₂
S ₂	s ₀	S ₃
S ₃	S ₃	S ₃

What language does this machine recognize?

Old State	0	1
s ₀	s ₀	s ₁
s ₁	s ₀	s ₂
s ₂	s ₀	S ₃
S ₃	S ₃	S ₃

What language does this machine recognize?

The set of all binary strings that contain **111** or don't end in **1**

Old State	0	1
s ₀	s ₀	s ₁
s ₁	s ₀	s ₂
S ₂	s ₀	S ₃
S ₃	S ₃	S ₃

Applications of FSMs (a.k.a. Finite Automata)

- Implementation of regular expression matching in programs like grep
- Control structures for sequential logic in digital circuits
- Algorithms for communication and cachecoherence protocols
 - Each agent runs its own FSM
- Design specifications for reactive systems
 - Components are communicating FSMs

Applications of FSMs (a.k.a. Finite Automata)

- Formal verification of systems
 - Is an unsafe state reachable?
- Computer games
 - FSMs implement non-player characters
- Minimization algorithms for FSMs can be extended to more general models used in
 - Text prediction
 - Speech recognition

 M_1 : Strings with an even number of 2's

M₁: Strings with an even number of 2's


```
boolean sumCongruentToZero(String str) {
   int sum = 0;
   for (int i = 0; i < str.length(); i++) {
      if (str.charAt(i) == '2')
         sum = (sum + 2) \% 3;
      if (str.charAt(i) == '1')
         sum = (sum + 1) \% 3;
   }
   return sum == 0;
}
```



```
boolean sumCongruentToZero(String str) {
   int sum = 0; // state
   for (int i = 0; i < str.length(); i++) {</pre>
      if (str.charAt(i) == '2')
         sum = (sum + 2) \% 3:
      if (str.charAt(i) == '1')
         sum = (sum + 1) \% 3;
   }
   return sum == 0;
}
```

FSMs can model Java code with a **finite** number of **fixed-size** variables that makes **one pass** through input **int[][]** TRANSITION = {...};

```
boolean sumCongruentToZero(String str) {
    int state = 0;
    for (int i = 0; i < str.length(); i++) {
        int d = str.charAt(i) - '0';
        state = TRANSITION[state][d];
    }
    return state == 0;
}</pre>
```

M₁: Strings with an even number of 2's

Strings over {0,1,2} w/ even number of 2's AND mod 3 sum 0

Strings over {0,1,2} w/ even number of 2's AND mod 3 sum 0

Strings over {0,1,2} w/ even number of 2's OR mod 3 sum 0

Strings over {0,1,2} w/ even number of 2's XOR mod 3 sum 0

The set of binary strings with a 1 in the 3rd position from the end

The set of binary strings with a 1 in the 3rd position from the end

The beginning versus the end

Adding Output to Finite State Machines

- So far we have considered finite state machines that just accept/reject strings
 - called "Deterministic Finite Automata" or DFAs
- Now we consider finite state machines with output
 - These are the kinds used as controllers

Enter 15 cents in dimes or nickels Press S or B for a candy bar

Basic transitions on N (nickel), D (dime), B (butterfinger), S (snickers)

Adding output to states: N – Nickel, S – Snickers, B – Butterfinger

Vending Machine, v1.0

Adding additional "unexpected" transitions to cover all symbols for each state