
CSE 311: Foundations of Computing

Lecture 22: Relations and Directed Graphs

Last time: Languages — REs and CFGs

Saw two new ways of defining languages
• Regular Expressions (0 È 1)* 0110 (0 È 1)*
– easy to understand (declarative)

• Context-free Grammars S ® SS | 0S1 | 1S0 | e
– more expressive
– (≈ recursively-defined sets)

We will connect these to machines shortly.
But first, we need some new math terminology….

Relations

Let A and B be sets,
A binary relation from A to B is a subset of A ´ B

Let A be a set,
A binary relation on A is a subset of A ´ A

Relations You Already Know

≥ on ℕ
That is: {(x,y) : x ≥ y and x, y Î ℕ}

< on ℝ
That is: {(x,y) : x < y and x, y Îℝ}

= on ∑*
That is: {(x,y) : x = y and x, y Î ∑*}

⊆ on 𝓟(U) for universe U
That is: {(A,B) : A ⊆ B and A, B Î𝓟(U)}

More Relation Examples

R1 = {(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)}

R2 = {(x, y) | x ≡5 y }

R3 = {(c1, c2) | c1 is a prerequisite of c2 }

R4 = {(s, c) | student s has taken course c }

Properties of Relations

Let R be a relation on A.

R is reflexive iff (a,a) Î R for every a Î A

R is symmetric iff (a,b) Î R implies (b,a) Î R

R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R

R is transitive iff (a,b)Î R and (b,c)Î R implies (a,c) Î R

Which relations have which properties?

≥ on ℕ	:		
< on ℝ	:		
= on ∑*	:	
⊆ on 𝓟(U):
R2 = {(x, y) | x ≡5 y}:
R3 = {(c1, c2) | c1 is a prerequisite of c2 }:

R is reflexive iff (a,a) Î R for every a Î A
R is symmetric iff (a,b) Î R implies (b, a)Î R
R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R
R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R

Which relations have which properties?

≥ on ℕ	:		Reflexive, Antisymmetric, Transitive
< on ℝ	:		Antisymmetric, Transitive
= on ∑*	:	Reflexive, Symmetric, Antisymmetric, Transitive

⊆ on 𝓟(U): Reflexive, Antisymmetric, Transitive
R2 = {(x, y) | x ≡5 y}: Reflexive, Symmetric, Transitive
R3 = {(c1, c2) | c1 is a prerequisite of c2 }: Antisymmetric

R is reflexive iff (a,a) Î R for every a Î A
R is symmetric iff (a,b) Î R implies (b, a)Î R
R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R
R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R

Combining Relations

Let 𝑹 be a relation from 𝑨 to 𝑩.
Let 𝑺 be a relation from 𝑩 to 𝑪.

The composition of 𝑹 and 𝑺, 𝑹 ∘ 𝑺 is the relation
from 𝑨 to 𝑪 defined by:

𝑹 ∘ 𝑺 = { (a, c) | $ b such that (a,b)Î 𝑹 and (b,c)Î 𝑺}

Intuitively, a pair is in the composition if there is a
“connection” from the first to the second.

Examples

(a,b) Î Parent iff b is a parent of a
(a,b) Î Sister iff b is a sister of a

When is (x,y) Î Parent ∘ Sister?

When is (x,y) Î Sister ∘ Parent?

R ∘ S = {(a, c) | $ b such that (a,b)Î R and (b,c)Î S}

Examples

Using only the relations Parent, Child, Father,
Son, Brother, Sibling, Husband

and composition, express the following:

Uncle: b is an uncle of a

Cousin: b is a cousin of a

Powers of a Relation

𝑹𝟐 = 𝑹 ∘ 𝑹
= { 𝒂, 𝒄 ∣ ∃𝒃 such that 𝒂, 𝒃 ∈ 𝑹 and 𝒃, 𝒄 ∈ 𝑹 }

𝑹𝟎 = { 𝒂, 𝒂 ∣ 𝒂 ∈ 𝑨} “the equality relation on 𝑨”

𝑹𝒏$𝟏 =𝑹𝒏 ∘ 𝑹 for 𝒏 ≥ 𝟎

e.g., 𝑹𝟏 = 𝑹𝟎 ∘ 𝑹 = 𝑹
𝑹𝟐 = 𝑹𝟏 ∘ 𝑹 = 𝑹 ∘ 𝑹

Non-constructive Definitions

Recursively defined sets and functions describe these
objects by explaining how to construct / compute them

But sets can also be defined non-constructively:

How can we define functions non-constructively?
– (useful for writing a function specification)

S = {x : P(x)}

Functions

A function 𝑓 ∶ 𝐴 → 𝐵 (A as input and B as output) is a
special type of relation.

A function f from A to B is a relation from A to B such that:
for every 𝑎 ∈ 𝐴, there is exactly one 𝑏 ∈ 𝐵 with (𝑎, 𝑏) ∈ 𝑓

I.e., for every input 𝑎 ∈ 𝐴, there is one output 𝑏 ∈ 𝐵.
We denote this 𝑏 by 𝑓(𝑎).

(When attempting to define a function this way, we sometimes say
the function is “well defined” if the exactly one part holds)

Functions

A function 𝑓 ∶ 𝐴 → 𝐵 (A as input and B as output) is a
special type of relation.

A function f from A to B is a relation from A to B such that:
for every 𝑎 ∈ 𝐴, there is exactly one 𝑏 ∈ 𝐵 with (𝑎, 𝑏) ∈ 𝑓

Ex: {((a, b), d) : d is the largest integer dividing a and b}

• gcd : ℕ×ℕ → ℕ
• defined without knowing how to compute it

Matrix Representation

Relation 𝑹 on 𝑨 = {𝑎!, … , 𝑎"}

{ (1, 1), (1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 3), (4, 2), (4, 3) }

1 2 3 4

1 1 1 0 1

2 1 0 1 0

3 0 1 1 0

4 0 1 1 0

𝒎𝒊𝒋 =
1 if 𝑎% , 𝑎& ∈ 𝑹
0 if 𝑎% , 𝑎& ∉ 𝑹

Directed Graphs

G = (V, E) V – vertices
E – edges (relation on vertices)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

G = (V, E) V – vertices
E – edges (relation on vertices)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges (relation on vertices)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges (relation on vertices)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges (relation on vertices)

Representation of Relations

Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }

a d

e

b c

Representation of Relations

Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }

a d

e

b c

Relational Composition using Digraphs

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑺

1

3

2 1

3

2

Relational Composition using Digraphs

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑺

1

3

2 1

3

2

Relational Composition using Digraphs

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑺

1

3

2 1

3

2

Special case: 𝑹 ∘ 𝑹 is paths of length 2.

• 𝑹 is paths of length 1
• 𝑹𝟎 is paths of length 0 (can’t go anywhere)
• 𝑹𝟑 = 𝑹𝟐 ∘ 𝑹 etc, so is 𝑹𝒏 paths of length n

Paths in Relations and Graphs

Let 𝑹 be a relation on a set 𝑨. There is a path of
length 𝒏 from a to b if and only if (a,b) Î 𝑹𝒏

Def: The length of a path in a graph is the number of
edges in it (counting repetitions if edge used > once).

Connectivity In Graphs

Let 𝑹 be a relation on a set 𝑨. The connectivity
relation 𝑹∗ consists of the pairs (𝑎, 𝑏) such that there is
a path from 𝑎 to 𝑏 in 𝑹.

Note: The text uses the wrong definition of this quantity.
What the text defines (ignoring k=0) is usually called R+

Def: Two vertices in a graph are connected iff there is a
path between them.

How Properties of Relations show up in Graphs

Let R be a relation on A.

R is reflexive iff (a,a) Î R for every a Î A

R is symmetric iff (a,b) Î R implies (b, a)Î R

R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R

R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R

Transitive-Reflexive Closure

Add the minimum possible number of edges to make the
relation transitive and reflexive.

Transitive-Reflexive Closure

Relation with the minimum possible number of extra edges to
make the relation both transitive and reflexive.

The transitive-reflexive closure of a relation 𝑹 is the
connectivity relation 𝑹*

𝑛-ary Relations

Let 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏 be sets. An 𝒏-ary relation on
these sets is a subset of 𝑨𝟏´𝑨𝟐´⋯ ´ 𝑨𝒏.

Relational Databases

Student_Name ID_Number Office GPA

Knuth 328012098 022 4.00

Von Neuman 481080220 555 3.78

Russell 238082388 022 3.85

Einstein 238001920 022 2.11

Newton 1727017 333 3.61

Karp 348882811 022 3.98

Bernoulli 2921938 022 3.21

STUDENT

Database Operations: Projection

Find all offices: 𝚷𝐎𝐟𝐟𝐢𝐜𝐞 STUDENT
Office

022

555

333

Find offices and GPAs: 𝚷𝐎𝐟𝐟𝐢𝐜𝐞,𝐆𝐏𝐀 STUDENT

Office GPA

022 4.00

555 3.78

022 3.85

022 2.11

333 3.61

022 3.98

022 3.21

Database Operations: Selection

Find students with GPA > 3.9 : σGPA>3.9(STUDENT)

Student_Name ID_Number Office GPA

Knuth 328012098 022 4.00

Karp 348882811 022 3.98

Retrieve the name and GPA for students with GPA > 3.9:
ΠStudent_Name,GPA(σGPA>3.9(STUDENT))

Student_Name GPA

Knuth 4.00

Karp 3.98

Relational Databases

Student_Name ID_Number Office GPA Course

Knuth 328012098 022 4.00 CSE311

Knuth 328012098 022 4.00 CSE351

Von Neuman 481080220 555 3.78 CSE311

Russell 238082388 022 3.85 CSE312

Russell 238082388 022 3.85 CSE344

Russell 238082388 022 3.85 CSE351

Newton 1727017 333 3.61 CSE312

Karp 348882811 022 3.98 CSE311

Karp 348882811 022 3.98 CSE312

Karp 348882811 022 3.98 CSE344

Karp 348882811 022 3.98 CSE351

Bernoulli 2921938 022 3.21 CSE351

What’s not so nice?

STUDENT

Relational Databases

ID_Number Course

328012098 CSE311

328012098 CSE351

481080220 CSE311

238082388 CSE312

238082388 CSE344

238082388 CSE351

1727017 CSE312

348882811 CSE311

348882811 CSE312

348882811 CSE344

348882811 CSE351

2921938 CSE351Better

Student_Name ID_Number Office GPA

Knuth 328012098 022 4.00

Von Neuman 481080220 555 3.78

Russell 238082388 022 3.85

Einstein 238001920 022 2.11

Newton 1727017 333 3.61

Karp 348882811 022 3.98

Bernoulli 2921938 022 3.21

STUDENT TAKES

Database Operations: Natural Join

Student_Name ID_Number Office GPA Course

Knuth 328012098 022 4.00 CSE311

Knuth 328012098 022 4.00 CSE351

Von Neuman 481080220 555 3.78 CSE311

Russell 238082388 022 3.85 CSE312

Russell 238082388 022 3.85 CSE344

Russell 238082388 022 3.85 CSE351

Newton 1727017 333 3.61 CSE312

Karp 348882811 022 3.98 CSE311

Karp 348882811 022 3.98 CSE312

Karp 348882811 022 3.98 CSE344

Karp 348882811 022 3.98 CSE351

Bernoulli 2921938 022 3.21 CSE351

Student ⋈ Takes

