CSE 311: Foundations of Computing

Lecture 21: Context-Free Grammars

Elo’" ANNUAL

SYMPOSIUM ON GRAMMAR!
FORMAL (L ANGUAGES )

P

o 2|2 -
e ﬁ o A
"V‘, bq

[Audience looks around]
“What is going on? There must be some context we’re missing”




Last time: Regular Expressions

Regular expressions over X

* Basis:
€ is a regular expression (could also include @)
a is a regular expression forany a € ~

* Recursive step:
If A and B are regular expressions then so are:
AUB
AB
A*



Last time: Regular Expression is a “pattern”

€ matches the empty string
a matches the one character string a

A U B matches all strings that either A matches
or B matches (or both)

AB matches all strings that have a first part that A
matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after

another

Definition of the language
matched by a regular expression




Limitations of Regular Expressions

* Not all languages can be specified by regular
expressions

* Even some easy things like
— Palindromes
— Strings with equal number of O's and 1's

 But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— etc.



Context-Free Grammars

* A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving

— Alphabet X of terminal symbols that can’t be replaced
— Afinite set V of variables that can be replaced
— One variable, usually S, is called the start symbol

* The substitution rules involving a variable A, written as
A—wy| wy |- | w

where each w; is a string of variables and terminals
—thatisw, € (VU X)"



How CFGs generate strings

* Begin with “S”

* If there is some variable A in the current string,
you can replace it by one of the w’s in the rules for A

—A-ow | wy || wy
— Write thisas xAy = xwy
— Repeat until no variables left

* The set of strings the CFG describes are all strings,
containing no variables, that can be generated in this
manner after a finite number of steps



Example Context-Free Grammars

Example: S—>0S|S1]|e¢



Example Context-Free Grammars

Example: S—>0S|S1]|e¢

0*1*



Example Context-Free Grammars

Example: S—>0S|S1]|e¢

0*1*

Example: S—>0S0|1S1|0|1]¢



Example Context-Free Grammars

Example: S—>0S|S1]|e¢

0*1*

Example: S—>0S0|1S1|0|1]¢

The set of all binary palindromes



Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’s and 1’s)



Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’s and 1’s)

S—>0S1]|¢



Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’s and 1’s)

S—>0S1]|¢

Grammar for {0"1%":n > 0}



Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’s and 1’s)

S—>0S1]|¢

Grammar for {0"1%":n > 0}

S —>0S11 | ¢



Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’s and 1’s)

S—>0S1]|¢

Grammar for {0"1"*10:n > 0}



Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’s and 1’s)

S—>0S1|¢

Grammar for {0"1"*10:n > 0}

S—>A10
A — 0Al | ¢



Example Context-Free Grammars

Example: S—H>S)]|SS|c¢



Example Context-Free Grammars

Example: S—H>S)]|SS|c¢

The set of all strings of matched parentheses



Example Context-Free Grammars

Binary strings with equal numbers of Os and 1s
(not just O"1", also 0101, 0110, etc.)

S—>SS|0S1)|1S0 | ¢



Example Context-Free Grammars

Binary strings with equal numbers of Os and 1s
(not just O"1", also 0101, 0110, etc.)

S—>SS|0S1)|1S0 | ¢

Let x € {0,1}". Define f,.(k) to be #0s - #1s in the
first k characters of x.

E.g., for x = 011100 f AN

N



Example Context-Free Grammars

Binary strings with equal numbers of Os and 1s
(not just O"1", also 0101, 0110, etc.)

S—>SS|0S1)|1S0 | ¢

Let x € {0,1}". Define f,.(k) to be #0s - #1s in the
first k characters of x.

If k-th character is O, then f,.(k) = f,(k—1) + 1
If k-th characteris 1,then f,.(k) = f,(k—1) —1



Example Context-Free Grammars

Let x € (0 U 1)*. Define f,. (k) to be the number Os
minus the number of 1s in the k characters of x.

N

N

f.(k) = 0 when first k characters have #0s = #1s
— starts out at O £ (0)=0
—ends at 0 f,(n) =0

E.g., for x = 011100



Example Context-Free Grammars

Three possibilities for f,. (k) for k € {1, ...,n — 1}

* f.(k) > 0forall such k / N\
S - 081

* f,(k) <0 forall such k \ /
S - 1S0

* f,(k) =0 for some such k /

S >SS



Simple Arithmetic Expressions

E> E+E|E+«E | (E) | x|y|z|0|1]2]3]|4
1516]718]9

Generate (2xx) t+vy



Simple Arithmetic Expressions

E> E+E|E+«E | (E) | x|y|z|0|1]2]3]|4
|516]7]8]9

Generate (2xx) t+vy

E = E+E = (E)+E = (EXE)+E = (2*E)+E = (2*Xx)+E = (2*X)+y



Parse Trees

Suppose that grammar G generates a string x
* A parse tree of x for G has
— Root labeled S (start symbol of G)

— The children of any node labeled A are labeled by
symbols of w left-to-right for some rule A —>w

— The symbols of x label the leaves ordered left-to-right

o\
0 SO
\

1 S 1

S—>0S0|1S1|0|1]|¢

Parse tree of 01110 .



Simple Arithmetic Expressions

E> E+E|E+«E | (E) | x|y|z|0|1]2]3]|4
1516]718]9

Generate x+y*z in two ways that give two different
parse trees



Simple Arithmetic Expressions

E> E+E|E+«E | (E) | x|y|z|0|1]2]3]|4
|516]7]8]9

Generate x+y*z in ways that give two different parse trees

E E = E+E = x+E = x+E*E = x+y*E = x+y*z
/ | AN (multiply y with z and then add to x)

RN E
X E % E /|\ E = E*E = E+E*E = x+E*E
| | E % E = X+y*E = x+y*z
Y, Z VA RN | (add xtoy, then multiply by z)
T
X Y



building precedence in simple arithmetic expressions

e E—expression (start symbol)

e T—term F—factor |-—identifier N - number
E > T|E+T
T > F | FxT
F —)(E) 1| N No longer
allows:
| > x|y|z E
N >0|1|2]3|4|5]|6]|7|8]9 1\
E * E
1IN
P
X Y



building precedence in simple arithmetic expressions

e E—expression (start symbol)

e T—term F-—factor |-identifier N - number

E > T|E+T

T > F | F«T

F > (E)|I|N

| >x]|y]|z

N >0]1]2|3|4]|5|6]|7]|8]9 /
F
+

X



building precedence in simple arithmetic expressions

e E—expression (start symbol)

e T—term F-factor |I-identifier N - number
E > T|E+T
T > F | FxT
Still
F _>(E)|I|N allows:
| —>x]|y]|z E
N —>0|1]2[3[4]5]6]718]9 |\
FE + E
VA RN
X E * E
|
YV  z



building precedence in simple arithmetic expressions

e E—expression (start symbol)

e T—term F-factor |I-identifier N - number
E > T|E+T
T > F | FxT
F > (E)|I|N
| —>x]|y]|z E
N —>0|1]2[3[4]5]6]718]9 |\
E + T
VAN

>:<!:*:T
vz



CFGs and recursively-defined sets of strings

* A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals
that S can generate

e A CFG with more than one variable is a
simultaneous recursive definition of the sets of
strings generated by each of its variables

— sometimes necessary to use more than one



CFGs and regular expressions

Theorem: For any set of strings (language) A
described by a regular expression, there is a
CFG that recognizes A.

Proof idea:
P(A) is “A is recognized by some CFG”

Structural induction based on the recursive
definition of regular expressions...




Regular Expressions over X

* Basis:
— € Is a regular expression
— a is a regular expression for any a € X

* Recursive step:
— If A and B are regular expressions then so are:
AUB
AB
A*



CFGs are more general than REs

e CFGto match RE ¢

S—

 CFG to match RE a (for any a € )

S—a



CFGs are more general than REs

Suppose CFG with start symbol S; matches RE A
CFG with start symbol S, matches RE B

e CFGtomatchREA U B

S—>S,|S, + rules from original CFGs

e CFGto match RE AB

S—>S,S, + rules from original CFGs



CFGs are more general than REs

Suppose CFG with start symbol S; matches RE A

* CFGtomatchREA®* (=eUAUAAUAAAU ...)

S—>S,S|¢ + rules from CFG with S,



Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

— Originally used to define programming
languages

— Variables denoted by long names in angle
brackets, e.g.

<identifier>, <if-then-else-statement>,
<assighment-statement>, <condition>

::= used instead of —



BNF for C

statement:
((identifier |
(expression? ";" |
block |

"case" constant-expression

"if" " (" expression ")" statement |
"if" " (" expression ")" statement "else" statement |
"switch”" " (" expression ")" statement |
"while™ " (" expression ")" statement |
"do" statement "while" " (" expression ")" ";" |

"for™ ™{" expression? ":;"
"goto" identifier ";" |
"continue™ ";" |
"break®™ ":% |

"return" expression? "

~

block:

"{" declaration*

expression:
assignment-expression$

assignment-expression: (

unary-expression (

'l='l I 'l*=ll I Yl/=ll |

mAa_mn I ” |_'l

)

)* conditional-expression

conditional-expression:
logical-OR-expression ( "2"

expression?

statement®

” %=n

n.mn
’

'l}'l

| ny=—m | n__m

expression

"default")

":")*

expression? ")" statement

| 'l<<=" I 'l>>='l I ” &=ll I

conditional-expression )?



BNF for (Simple) English

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb> | <verb><object>
<object>::=<noun phrase>

Parse:
The yellow duck squeaked loudly
The red truck hit a parked car



