
CSE 311: Foundations of Computing

Lecture 21: Context-Free Grammars

[Audience looks around] 
“What is going on? There must be some context we’re missing”



Last time: Regular Expressions

Regular expressions over S
• Basis:

e is a regular expression (could also include Æ)
a is a regular expression for any a Î S

• Recursive step:
If A and B are regular expressions then so are:

A È B
AB
A*



e matches the empty string
a matches the one character string a
A È B matches all strings that either A matches 

or B matches (or both)
AB matches all strings that have a first part that A

matches followed by a second part that B
matches

A* matches all strings that have any number of 
strings (even 0) that A matches, one after 
another

Definition of the language
matched by a regular expression

Last time: Regular Expression is a “pattern”



Limitations of Regular Expressions

• Not all languages can be specified by regular 
expressions

• Even some easy things like 
– Palindromes
– Strings with equal number of 0’s and 1’s

• But also more complicated structures in 
programming languages
– Matched parentheses
– Properly formed arithmetic expressions
– etc.



Context-Free Grammars

• A Context-Free Grammar (CFG) is given by a finite set 
of substitution rules involving
– Alphabet S of terminal symbols that can’t be replaced
– A finite set V of variables that can be replaced
– One variable, usually S, is called the start symbol

• The substitution rules involving a variable A, written as
A® w1 |  w2 | ⋯ | wk

where each wi is a string of variables and terminals
– that is wi ∈ (VÈ S)*



How CFGs generate strings

• Begin with “S”

• If there is some variable A in the current string,
you can replace it by one of the w’s in the rules for A
– A ® w1 |  w2 | ⋯ | wk

–Write this as    xAy⇒ xwy
– Repeat until no variables left

• The set of strings the CFG describes are all strings, 
containing no variables, that can be generated in this 
manner after a finite number of steps



Example Context-Free Grammars

Example: S ® 0S | S1 | e



Example Context-Free Grammars

Example: S ® 0S | S1 | e

0*1*



Example Context-Free Grammars

Example: S ® 0S | S1 | e

Example:      S ® 0S0 | 1S1 | 0 | 1 | e

0*1*



Example Context-Free Grammars

Example: S ® 0S | S1 | e

Example:      S ® 0S0 | 1S1 | 0 | 1 | e

The set of all binary palindromes

0*1*



Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)



Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

S ® 0S1 | e



Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0!1"!: 𝑛 ≥ 0

S ® 0S1 | e



Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0!1"!: 𝑛 ≥ 0

S ® 0S1 | e

S ® 0S11 | e



Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0!1!#$0: 𝑛 ≥ 0

S ® 0S1 | e



Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0!1!#$0: 𝑛 ≥ 0

S ® 0S1 | e

S ® A10
A ® 0A1 | e



Example Context-Free Grammars

Example:       S ® (S) | SS | e



Example Context-Free Grammars

Example:       S ® (S) | SS | e

The set of all strings of matched parentheses



Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)

S ® SS | 0S1 | 1S0 | e



Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)

Let 𝑥 ∈ {0,1}∗. Define 𝑓" 𝑘 to be #0s – #1s in the 
first 𝑘 characters of 𝑥.

E.g., for x = 011100
0     1     2     3     4     5     6

Example Context-Free Grammars

S ® SS | 0S1 | 1S0 | e

𝑓



Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)

Let 𝑥 ∈ {0,1}∗. Define 𝑓" 𝑘 to be #0s – #1s in the 
first 𝑘 characters of 𝑥.

If 𝑘-th character is 0, then 𝑓" 𝑘 = 𝑓" 𝑘 − 1 + 1
If 𝑘-th character is 1, then 𝑓" 𝑘 = 𝑓" 𝑘 − 1 − 1

Example Context-Free Grammars

S ® SS | 0S1 | 1S0 | e



Let 𝑥 ∈ (0 ∪ 1)∗. Define 𝑓" 𝑘 to be the number 0s 
minus the number of 1s in the 𝑘 characters of 𝑥.

E.g., for x = 011100

𝑓" 𝑘 = 0 when first k characters have #0s = #1s
– starts out at 0 𝑓" 0 = 0
– ends at 0 𝑓" 𝑛 = 0

0     1     2     3     4     5     6

Example Context-Free Grammars

𝑓



Three possibilities for 𝑓"(k) for 𝑘 ∈ {1,… , 𝑛 − 1}

• 𝑓" 𝑘 > 0 for all such 𝑘

• 𝑓" 𝑘 < 0 for all such 𝑘

• 𝑓" 𝑘 = 0 for some such 𝑘

Example Context-Free Grammars

0     1                         n-1 n

S ® 0S1

S ® 1S0

S ® SS

0     1                         n-1 n

0     1                         n-1 n



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate  (2∗x) + y



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate  (2∗x) + y

E ⇒ E+E⇒	(E)+E⇒ (E∗E)+E⇒ (2∗E)+E⇒ (2∗x)+E⇒ (2∗x)+y



Parse Trees 

Suppose that grammar G generates a string x
• A parse tree of x for G has
– Root labeled S (start symbol of G)
– The children of any node labeled A are labeled by 

symbols of w left-to-right  for some rule A ®w
– The symbols of x label the leaves ordered left-to-right

S ® 0S0 | 1S1 | 0 | 1 | e

S

0 0S

S1 1

1
Parse tree of 01110



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate x+y∗z in two ways that give two different 
parse trees



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate x+y∗z in ways that give two different parse trees

E ⇒ E+E⇒ x+E⇒	x+E∗E⇒ x+y∗E⇒ x+y∗z
(multiply	y	with	z	and	then	add	to	x)

E ⇒ E∗E⇒	E+E∗E⇒ x+E∗E
⇒ x+y∗E⇒ x+y∗z

(add	x	to	y,	then	multiply	by	z)

E

E

+
x

E*

z
y

E E

E

E +

x

E

*
zy

E E



building precedence in simple arithmetic expressions

• E – expression  (start symbol)
• T – term   F – factor   I – identifier  N - number

E ® T | E+T
T ® F | F∗T
F ® (E) | I | N
I ® x | y | z
N ® 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

E

E

+
x

E*

z
y

E E

No longer
allows:



building precedence in simple arithmetic expressions

• E – expression  (start symbol)
• T – term   F – factor   I – identifier  N - number

E ® T | E+T
T ® F | F∗T
F ® (E) | I | N
I ® x | y | z
N ® 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

E

F

+
x

T*

zy

T

?



building precedence in simple arithmetic expressions

• E – expression  (start symbol)
• T – term   F – factor   I – identifier  N - number

E ® T | E+T
T ® F | F∗T
F ® (E) | I | N
I ® x | y | z
N ® 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

E

E

+

x

E

*
zy

E

E

Still
allows:



building precedence in simple arithmetic expressions

• E – expression  (start symbol)
• T – term   F – factor   I – identifier  N - number

E ® T | E+T
T ® F | F∗T
F ® (E) | I | N
I ® x | y | z
N ® 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

E

T

+

x

T

*
zy

E

F



CFGs and recursively-defined sets of strings

• A CFG with the start symbol S as its only variable 
recursively defines the set of strings of terminals 
that S can generate

• A CFG with more than one variable is a 
simultaneous recursive definition of the sets of 
strings generated by each of its variables
– sometimes necessary to use more than one



Theorem: For any set of strings (language) 𝐴
described by a regular expression, there is a 
CFG that recognizes 𝐴.  

Proof idea:
P(A) is “A is recognized by some CFG”
Structural induction based on the recursive 
definition of regular expressions...

CFGs and regular expressions



Regular Expressions over S

• Basis:
– ɛ is a regular expression
– a is a regular expression for any a Î S

• Recursive step:
– If A and B are regular expressions then so are:

A È B
AB
A*



CFGs are more general than REs

• CFG to match RE e

S ®

• CFG to match RE a (for any 𝑎 Î S)

S ® a



CFGs are more general than REs

Suppose CFG with start symbol S1 matches RE A 
CFG with start symbol S2 matches RE B

• CFG to match RE A È B

S ® S1 | S2 + rules from original CFGs

• CFG to match RE AB

S ® S1 S2 + rules from original CFGs



CFGs are more general than REs

Suppose CFG with start symbol S1 matches RE A 

• CFG to match RE A* (= e È A È AA È AAA È ... )

S ® S1 S | e + rules from CFG with S1



Backus-Naur Form  (The same thing…)

BNF (Backus-Naur Form) grammars
– Originally used to define programming 

languages
– Variables denoted by long names in angle 

brackets, e.g.
<identifier>, <if-then-else-statement>,                
<assignment-statement>, <condition>
∷= used instead of  ®



BNF for C



BNF for (Simple) English

Back to middle school:
<sentence>∷=<noun phrase><verb phrase>
<noun phrase>∷==<article><adjective><noun>
<verb phrase>∷=<verb><adverb>|<verb><object>
<object>∷=<noun phrase>

Parse:   
The yellow duck squeaked loudly
The red truck hit a parked car


