CSE 311: Foundations of Computing

Lecture 21: Context-Free Grammars

[Audience looks around]
"What is going on? There must be some context we're missing"

Last time: Regular Expressions

Regular expressions over Σ

- Basis:
ε is a regular expression
(could also include \varnothing)
a is a regular expression for any $a \in \Sigma$
- Recursive step:

If A and B are regular expressions then so are:
$A \cup B$
AB
A*

Last time: Regular Expression is a "pattern"

ε matches the empty string
a matches the one character string a
$A \cup B$ matches all strings that either A matches or B matches (or both)
$A B$ matches all strings that have a first part that A matches followed by a second part that B matches
A* matches all strings that have any number of strings (even 0) that A matches, one after another

Limitations of Regular Expressions

- Not all languages can be specified by regular expressions
- Even some easy things like
- Palindromes
- Strings with equal number of 0's and 1's
- But also more complicated structures in programming languages
- Matched parentheses
- Properly formed arithmetic expressions
- etc.

Context-Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
- Alphabet Σ of terminal symbols that can't be replaced
- A finite set V of variables that can be replaced
- One variable, usually \mathbf{S}, is called the start symbol
- The substitution rules involving a variable \mathbf{A}, written as

$$
A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}
$$

where each w_{i} is a string of variables and terminals

- that is $\mathrm{w}_{\mathrm{i}} \in(\mathbf{V} \cup \Sigma)^{*}$

How CFGs generate strings

- Begin with " \mathbf{S} "
- If there is some variable \mathbf{A} in the current string, you can replace it by one of the w's in the rules for \mathbf{A}
- A $\rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}$
- Write this as $x A y \Rightarrow x w y$
- Repeat until no variables left
- The set of strings the CFG describes are all strings, containing no variables, that can be generated in this manner after a finite number of steps

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow$ OS $|\mathbf{S} 1| \varepsilon$

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow$ OS $|\mathbf{S} 1| \varepsilon$

$$
0 * 1 *
$$

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow$ OS $|\mathbf{S} 1| \varepsilon$

0*1*

Example: $\quad \mathbf{S} \rightarrow \mathbf{O S O | 1 S 1 | 0 | 1 | \varepsilon}$

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow$ OS $|\mathbf{S} 1| \varepsilon$

$$
0 * 1 *
$$

Example: $\quad \mathbf{S} \rightarrow \mathbf{O S O | 1 S 1 | 0 | 1 | \varepsilon}$
The set of all binary palindromes

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(i.e., matching 0*1* but with same number of 0's and 1's)

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(i.e., matching 0*1* but with same number of 0's and 1's)

$$
\mathbf{S} \rightarrow \mathbf{0 S} 1 \mid \varepsilon
$$

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(i.e., matching 0*1* but with same number of 0's and 1's)

$$
\mathbf{S} \rightarrow \mathbf{0 S} 1 \mid \varepsilon
$$

Grammar for $\left\{0^{n} 1^{2 n}: n \geq 0\right\}$

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(i.e., matching 0*1* but with same number of 0's and 1's)

$$
\mathbf{S} \rightarrow \mathbf{O S} 1 \mid \varepsilon
$$

Grammar for $\left\{0^{n} 1^{2 n}: n \geq 0\right\}$

$$
\mathbf{S} \rightarrow \mathbf{O S} 11 \mid \varepsilon
$$

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(i.e., matching 0*1* but with same number of 0's and 1's)

$$
\mathbf{S} \rightarrow \mathbf{0 S} 1 \mid \varepsilon
$$

Grammar for $\left\{0^{n} 1^{n+1} 0: n \geq 0\right\}$

Example Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(i.e., matching 0*1* but with same number of 0's and 1's)

$$
\mathbf{S} \rightarrow \mathbf{0 S} 1 \mid \varepsilon
$$

Grammar for $\left\{0^{n} 1^{n+1} 0: n \geq 0\right\}$

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathrm{A} 10 \\
& \mathbf{A} \rightarrow \mathrm{OA} 1 \mid \varepsilon
\end{aligned}
$$

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow \mathbf{(S)}|\mathbf{S S}| \varepsilon$

Example Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow \mathbf{(S)}|\mathbf{S S}| \varepsilon$

The set of all strings of matched parentheses

Example Context-Free Grammars

Binary strings with equal numbers of $0 s$ and $1 s$ (not just $0^{n 1} 1^{n}$, also 0101, 0110, etc.)
$\mathbf{S} \rightarrow \mathbf{S S}|\mathbf{O S 1}|$ 1SO| ε

Example Context-Free Grammars

Binary strings with equal numbers of $0 s$ and $1 s$ (not just $0^{n 1} 1^{n}$, also 0101, 0110, etc.)

$\mathbf{S} \rightarrow \mathbf{S S}|\mathbf{O S} 1|$ 1SO | ε

Let $x \in\{0,1\}^{*}$. Define $f_{x}(k)$ to be \#0s - \#1s in the first k characters of x.
E.g., for $\mathrm{x}=011100$

Example Context-Free Grammars

Binary strings with equal numbers of 0 s and 1 s (not just $0^{n 1} 1^{n}$, also 0101, 0110, etc.)

$\mathbf{S} \rightarrow \mathbf{S S}|\mathbf{O S} 1|$ 1SO | ε

Let $x \in\{0,1\}^{*}$. Define $f_{x}(k)$ to be \#0s - \#1s in the first k characters of x.

If k-th character is 0 , then $f_{x}(k)=f_{x}(k-1)+1$
If k-th character is $\mathbf{1}$, then $f_{x}(k)=f_{x}(k-1)-1$

Example Context-Free Grammars

Let $x \in(0 \cup 1)^{*}$. Define $f_{x}(k)$ to be the number 0 s minus the number of 1 s in the k characters of x.
E.g., for $\mathrm{x}=011100$

$f_{x}(k)=0$ when first k characters have \#0s = \#1s

- starts out at 0

$$
\begin{aligned}
& f_{x}(0)=0 \\
& f_{x}(n)=0
\end{aligned}
$$

- ends at 0

Example Context-Free Grammars

Three possibilities for $f_{x}(\mathrm{k})$ for $k \in\{1, \ldots, n-1\}$

- $f_{x}(k)>0$ for all such k

$$
\mathrm{S} \rightarrow 0 \mathrm{~S} 1
$$

- $f_{x}(k)<0$ for all such k

$$
s \rightarrow 1 \mathrm{SO}
$$

- $f_{x}(k)=0$ for some such k

$$
\mathbf{S} \rightarrow \mathbf{S S}
$$

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $(2 * x)+y$

Simple Arithmetic Expressions

$$
\begin{aligned}
& E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
& \quad|5| 6|7| 8 \mid 9
\end{aligned}
$$

Generate $(2 * x)+y$

$$
\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow(\mathrm{E})+\mathrm{E} \Rightarrow(\mathrm{E} * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{y}
$$

Parse Trees

Suppose that grammar G generates a string x

- A parse tree of x for G has
- Root labeled S (start symbol of G)
- The children of any node labeled A are labeled by symbols of w left-to-right for some rule A \rightarrow w
- The symbols of x label the leaves ordered left-to-right
$\mathbf{S} \rightarrow$ OSO \mid 1S1 $|0| 1 \mid \varepsilon$

Parse tree of 01110

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $x+y * z$ in two ways that give two different parse trees

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $\mathrm{x}+\mathrm{y} * \mathrm{z}$ in ways that give two different parse trees

$E \Rightarrow E+E \Rightarrow x+E \Rightarrow x+E * E \Rightarrow x+y * E \Rightarrow x+y * z$
(multiply y with z and then add to x)

building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N}-number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{x}|\mathrm{y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

No longer allows:

building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{x}|\mathrm{y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N}-number
$\mathrm{E} \rightarrow \mathbf{T | E + T}$
$\mathrm{T} \rightarrow \mathrm{F} \mid \mathrm{F} * \mathrm{~T}$
$\mathrm{F} \rightarrow(\mathrm{E})|\mathrm{I}| \mathbf{N}$
I $\rightarrow x|y| z$
$\mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$

> Still allows:

building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N}-number
$\mathrm{E} \rightarrow \mathbf{T} \mid \mathrm{E}+\mathbf{T}$
$\mathrm{T} \rightarrow \mathrm{F} \mid \mathrm{F} * \mathrm{~T}$
$\mathrm{F} \rightarrow(\mathrm{E})|\mathrm{I}| \mathbf{N}$
I $\rightarrow x|y| z$
$\mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$

CFGs and recursively-defined sets of strings

- A CFG with the start symbol \mathbf{S} as its only variable recursively defines the set of strings of terminals that \mathbf{S} can generate
- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by each of its variables
- sometimes necessary to use more than one

CFGs and regular expressions

Theorem: For any set of strings (language) A described by a regular expression, there is a CFG that recognizes A.

Proof idea:
$P(A)$ is " A is recognized by some CFG"
Structural induction based on the recursive definition of regular expressions...

Regular Expressions over Σ

- Basis:
$-\varepsilon$ is a regular expression
$-\boldsymbol{a}$ is a regular expression for any $\mathbf{a} \in \Sigma$
- Recursive step:
- If A and B are regular expressions then so are: $A \cup B$

AB
A*

CFGs are more general than REs

- CFG to match RE ε

$$
\mathbf{S} \rightarrow
$$

- CFG to match RE a (for any $a \in \Sigma$)
$\mathbf{S} \rightarrow \mathrm{a}$

CFGs are more general than REs

Suppose CFG with start symbol \mathbf{S}_{1} matches RE A CFG with start symbol \mathbf{S}_{2} matches RE B

- CFG to match RE $\mathbf{A} \cup \mathbf{B}$

$$
\mathbf{S} \rightarrow \mathbf{S}_{1} \mid \mathbf{S}_{\mathbf{2}} \quad+\text { rules from original CFGs }
$$

- CFG to match RE AB
$\mathbf{S} \rightarrow \mathbf{S}_{1} \mathbf{S}_{2}$
+ rules from original CFGs

CFGs are more general than REs

Suppose CFG with start symbol \mathbf{S}_{1} matches RE A

- CFG to match RE A*
$\mathbf{S} \rightarrow \mathbf{S}_{\mathbf{1}} \mathbf{S} \mid \varepsilon$
$(=\varepsilon \cup \mathbf{A} \cup \mathbf{A A} \cup \mathbf{A A A} \cup \ldots)$
+ rules from CFG with $\mathbf{S}_{\mathbf{1}}$

Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

- Originally used to define programming languages
- Variables denoted by long names in angle brackets, e.g.
<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
$::=$ used instead of \rightarrow

BNF for C

```
statement:
    ((identifier | "case" constant-expression | "default") ":")*
    (expression? ";" |
        block |
        "if" "(" expression ")" statement |
        "if" "(" expression ")" statement "else" statement |
        "switch" "(" expression ")" statement |
        "while" "(" expression ")" statement |
        "do" statement "while" "(" expression ")" ";" |
        "for" "(" expression? ";" expression? ";" expression? ")" statement |
        "goto" identifier ";" |
        "continue" ";" |
        "break" ";" |
        "return" expression? ";"
    )
block: "{" declaration* statement* "}"
expression:
    assignment-expression%
assignment-expression: (
        unary-expression (
            "=" | "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | "&=" |
            "^=" | "|="
        )
    )* conditional-expression
conditional-expression:
    logical-OR-expression ( "?" expression ":" conditional-expression )?
```


BNF for (Simple) English

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>
Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

