CSE 311: Foundations of Computing

Lecture 21: Context-Free Grammars

[Audience looks around]

"What is going on? There must be some context we're missing"

Regular expressions over $\boldsymbol{\Sigma}$

• Basis:

ε is a regular expression (could also include Ø) a is a regular expression for any a ∈ Σ

• Recursive step:

If **A** and **B** are regular expressions then so are:

A ∪ B AB A*

Last time: Regular Expression is a "pattern"

- ε matches the empty string
- *a* matches the one character string *a*
- $A \cup B$ matches all strings that either A matches or B matches (or both)
- AB matches all strings that have a first part that A matches followed by a second part that B matches
- A* matches all strings that have any number of strings (even 0) that A matches, one after another

Definition of the *language* matched by a regular expression

Limitations of Regular Expressions

- Not all languages can be specified by regular expressions
- Even some easy things like
 - Palindromes
 - Strings with equal number of 0's and 1's
- But also more complicated structures in programming languages
 - Matched parentheses
 - Properly formed arithmetic expressions
 - etc.

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
 - Alphabet Σ of *terminal symbols* that can't be replaced
 - A finite set V of variables that can be replaced
 - One variable, usually **S**, is called the *start symbol*
- The substitution rules involving a variable **A**, written as $\begin{array}{c|c} A \to w_1 & w_2 & \cdots & w_k \\ \end{array}$ where each w_i is a string of variables and terminals

- that is $w_i \in (\mathbf{V} \cup \Sigma)^*$

How CFGs generate strings

- Begin with "S"
- If there is some variable A in the current string, you can replace it by one of the w's in the rules for A

$$- \mathbf{A} \rightarrow \mathbf{w}_1 \mid \mathbf{w}_2 \mid \cdots \mid \mathbf{w}_k$$

- Write this as $xAy \Rightarrow xwy$
- Repeat until no variables left
- The set of strings the CFG describes are all strings, containing no variables, that can be *generated* in this manner after a finite number of steps

0*1*

0*1*

Example: $S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \epsilon$

0*1*

Example: $S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \epsilon$

The set of all binary palindromes

(i.e., matching 0*1* but with same number of 0's and 1's)

(i.e., matching 0*1* but with same number of 0's and 1's)

$\textbf{S} \rightarrow \textbf{OS1} ~|~ \epsilon$

(i.e., matching 0*1* but with same number of 0's and 1's)

$\textbf{S} \rightarrow \textbf{OS1} ~|~ \epsilon$

Grammar for $\{0^n 1^{2n} : n \ge 0\}$

(i.e., matching 0*1* but with same number of 0's and 1's)

$\textbf{S} \rightarrow \textbf{OS1} ~|~ \epsilon$

Grammar for $\{0^n 1^{2n} : n \ge 0\}$

$S \rightarrow 0S11 \mid \epsilon$

(i.e., matching 0*1* but with same number of 0's and 1's)

$\textbf{S} \rightarrow \textbf{OS1} ~|~ \epsilon$

Grammar for $\{0^n 1^{n+1} 0 : n \ge 0\}$

(i.e., matching 0*1* but with same number of 0's and 1's)

$\textbf{S} \rightarrow \textbf{OS1} ~|~ \epsilon$

Grammar for $\{0^n 1^{n+1} 0 : n \ge 0\}$

 $S \rightarrow A 10$ $A \rightarrow 0A1 | \epsilon$

Example: $S \rightarrow (S) \mid SS \mid \epsilon$

The set of all strings of matched parentheses

Binary strings with equal numbers of 0s and 1s (not just 0ⁿ1ⁿ, also 0101, 0110, etc.)

 $\textbf{S} \rightarrow \textbf{SS}$ | 0S1 | 1S0 | ϵ

Binary strings with equal numbers of 0s and 1s (not just 0ⁿ1ⁿ, also 0101, 0110, etc.)

 $\textbf{S} \rightarrow \textbf{SS}$ | 0S1 | 1S0 | ϵ

Let $x \in \{0,1\}^*$. Define $f_x(k)$ to be #0s – #1s in the first k characters of x.

Binary strings with equal numbers of 0s and 1s (not just 0ⁿ1ⁿ, also 0101, 0110, etc.)

$\textbf{S} \rightarrow \textbf{SS}$ | 0S1 | 1S0 | ϵ

Let $x \in \{0,1\}^*$. Define $f_x(k)$ to be #0s – #1s in the first k characters of x.

If *k*-th character is 0, then $f_x(k) = f_x(k-1) + 1$ If *k*-th character is 1, then $f_x(k) = f_x(k-1) - 1$ Let $x \in (0 \cup 1)^*$. Define $f_x(k)$ to be the number Os minus the number of 1s in the k characters of x.

 $f_x(k) = 0$ when first k characters have #0s = #1s - starts out at 0 $f_x(0) = 0$ - ends at 0 $f_x(n) = 0$ Three possibilities for $f_x(k)$ for $k \in \{1, ..., n-1\}$

- $f_x(k) > 0$ for all such k**S** \rightarrow **OS1**
- $f_x(k) < 0$ for all such k

 $\textbf{S} \rightarrow \textbf{1S0}$

• $f_x(k) = 0$ for some such k

 $S \rightarrow SS$

$E \rightarrow E + E | E * E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4$ | 5 | 6 | 7 | 8 | 9

Generate (2*x) + y

$E \rightarrow E + E \mid E * E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$ $\mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Generate (2*x) + y

 $\mathsf{E} \Rightarrow \mathsf{E} + \mathsf{E} \Rightarrow (\mathsf{E}) + \mathsf{E} \Rightarrow (\mathsf{E} * \mathsf{E}) + \mathsf{E} \Rightarrow (\mathbf{2} * \mathsf{E}) + \mathsf{E} \Rightarrow (\mathbf{2} * x) + \mathsf{E} \Rightarrow (\mathbf{2} * x) + \mathsf{y}$

Suppose that grammar G generates a string x

- A parse tree of **x** for **G** has
 - Root labeled S (start symbol of G)
 - The children of any node labeled A are labeled by symbols of w left-to-right for some rule $A \rightarrow w$
 - The symbols of x label the leaves ordered left-to-right

 $\mathbf{S} \rightarrow \mathbf{0S0} \mid \mathbf{1S1} \mid \mathbf{0} \mid \mathbf{1} \mid \mathbf{\epsilon}$

Parse tree of 01110

$E \rightarrow E + E | E * E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4$ | 5 | 6 | 7 | 8 | 9

Generate x+y*z in two ways that give two *different* parse trees

$E \rightarrow E + E | E * E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4$ | 5 | 6 | 7 | 8 | 9

Generate x+y*z in ways that give two *different* parse trees

- **E** expression (start symbol)
- \mathbf{T} term \mathbf{F} factor \mathbf{I} identifier \mathbf{N} number
 - $E \rightarrow T \mid E+T$
 - $T \rightarrow F \mid F \ast T$
 - $F \rightarrow (E) \mid I \mid N$
 - $I \rightarrow x \mid y \mid z$
 - $N \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

- **E** expression (start symbol)
- \mathbf{T} term \mathbf{F} factor \mathbf{I} identifier \mathbf{N} number
 - $E \rightarrow T \mid E+T$
 - $T \rightarrow F \mid F \ast T$
 - $F \rightarrow (E) \mid I \mid N$
 - $I \rightarrow x \mid y \mid z$
 - $N \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

- **E** expression (start symbol)
- \mathbf{T} term \mathbf{F} factor \mathbf{I} identifier \mathbf{N} number
 - $E \rightarrow T \mid E+T$
 - $T \rightarrow F \mid F \ast T$
 - $F \rightarrow (E) \mid I \mid N$
 - $I \rightarrow x \mid y \mid z$
 - $N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

- **E** expression (start symbol)
- **T** term **F** factor **I** identifier **N** number
 - $E \rightarrow T \mid E+T$
 - $T \rightarrow F \mid F \ast T$
 - $F \rightarrow (E) \mid I \mid N$
 - $I \rightarrow x \mid y \mid z$
 - $N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

CFGs and recursively-defined sets of strings

- A CFG with the start symbol S as its *only* variable recursively defines the set of strings of terminals that S can generate
- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by *each* of its variables
 - sometimes necessary to use more than one

Theorem: For any set of strings (language) *A* described by a regular expression, there is a CFG that recognizes *A*.

Proof idea:

P(A) is "A is recognized by some CFG"

Structural induction based on the recursive definition of regular expressions...

• Basis:

- $-\epsilon$ is a regular expression
- **a** is a regular expression for any $a \in \Sigma$
- Recursive step:
 - If A and B are regular expressions then so are: $A \cup B$
 - AB A*

CFGs are more general than **REs**

• CFG to match RE **E**

 $\rm S \,{\rightarrow}$

• CFG to match RE **a** (for any $a \in \Sigma$)

 $\mathbf{S} \rightarrow \mathbf{a}$

CFGs are more general than **REs**

Suppose CFG with start symbol **S**₁ matches RE **A** CFG with start symbol **S**₂ matches RE **B**

- CFG to match RE $\mathbf{A} \cup \mathbf{B}$
 - $S \rightarrow S_1 \mid S_2$ + rules from original CFGs
- CFG to match RE **AB**

 $\mathbf{S} \rightarrow \mathbf{S}_1 \mathbf{S}_2$ + rules from original CFGs

CFGs are more general than **REs**

Suppose CFG with start symbol S_1 matches RE A

• CFG to match RE A^* (= $\varepsilon \cup A \cup AA \cup AAA \cup ...$)

 $S \rightarrow S_1 S \mid \epsilon$ + rules from CFG with S_1

BNF (Backus-Naur Form) grammars

- Originally used to define programming languages
- Variables denoted by long names in angle brackets, e.g.

<identifier>, <if-then-else-statement>,

<assignment-statement>, <condition>

::= used instead of \rightarrow

BNF for C

```
statement:
  ((identifier | "case" constant-expression | "default") ":")*
  (expression? ";" |
  block |
   "if" "(" expression ")" statement |
   "if" "(" expression ")" statement "else" statement |
   "switch" "(" expression ")" statement |
   "while" "(" expression ")" statement |
   "do" statement "while" "(" expression ")" ";" |
   "for" "(" expression? ";" expression? ";" expression? ")" statement |
   "goto" identifier ";" |
   "continue" ";" |
   "break" ";"
   "return" expression? ";"
  )
block: "{" declaration* statement* "}"
expression:
  assignment-expression%
assignment-expression: (
    unary-expression (
      "=" | "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | "&=" |
      "^=" | "|="
 )* conditional-expression
conditional-expression:
  logical-OR-expression ( "?" expression ":" conditional-expression )?
```

Back to middle school:

<sentence>::=<noun phrase><verb phrase>

<noun phrase>::==<article><adjective><noun>

<verb phrase>::=<verb><adverb>|<verb><object>

<object>::=<noun phrase>

Parse:

The yellow duck squeaked loudly The red truck hit a parked car