Last Time: Recursive Definitions

- Any recursively defined set can be translated into a Java class

- Any recursively defined function can be translated into a Java function
 - some (but not all) can be written more cleanly as loops

- Recursively defined functions and sets are our mathematical models of code and the data it operates on
Last time: Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the *Basis step*

Inductive Hypothesis: Assume that P is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that $P(w)$ holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the *Inductive Hypothesis*

Conclude that $\forall x \in S, P(x)$
Linked Lists of Integers

- **Basis:** null ∈ Lists
- **Recursive step:**

 If \(L \in \text{Lists} \) and \(v \in \mathbb{Z} \), then \(\text{Node}(v, L) \in \text{Lists} \)

Examples:

- null

 [1, 2]
Functions on Linked Lists

Set of numbers stored in a list:

- \textbf{values}(null) = \emptyset
- \textbf{values}(\text{Node}(v, L)) = \{v\} \cup \text{values}(L)

Example:

\begin{align*}
\text{values}(\text{Node}(1, \text{Node}(2, \text{null})))
&= \{1\} \cup \text{values}(\text{Node}(2, \text{null})) & \text{Def of values} \\
&= \{1\} \cup \{2\} \cup \text{values}(\text{null}) & \text{Def of values} \\
&= \{1\} \cup \{2\} \cup \emptyset & \text{Def of values} \\
&= \{1, 2\} & \text{Def of } \cup
\end{align*}
Functions on Linked Lists

Remove the numbers that don’t satisfy $p(v)$:

- $\text{filter}_p(\text{null}) = \text{null}$
- $\text{filter}_p(\text{Node}(v, \text{L})) = \text{Node}(v, \text{filter}_p(\text{L}))$ if $p(v)$
- $\text{filter}_p(\text{Node}(v, \text{L})) = \text{filter}_p(\text{L})$ otherwise

Example: $p(v) := v < 2$

$\text{filter}_p(\text{Node}(1, \text{Node}(2, \text{null})))$

$= \text{Node}(1, \text{filter}_p(\text{Node}(2, \text{null})))$ Def filter_p

$= \text{Node}(1, \text{filter}_p(\text{null}))$ Def filter_p

$= \text{Node}(1, \text{null})$ Def filter_p
Claim: $x \in \text{values}(\text{filter}_p(L))$ iff $p(x) \land x \in \text{values}(L)$
Claim: \[x \in \text{values}(\text{filter}_p(L)) \text{ iff } p(x) \land x \in \text{values}(L) \]

\[Q(L) := \text{“} x \in \text{values}(\text{filter}_p(L)) \text{ iff } p(x) \land x \in \text{values}(L) \text{ for all } x \in \mathbb{Z} \text{”}. \]

We will prove \(Q(L) \) for \(L \in \text{Lists} \) by structural induction.
Claim: \(x \in \text{values}(\text{filter}_p(L)) \iff p(x) \land x \in \text{values}(L) \)

\(Q(L) := \text{“} x \in \text{values}(\text{filter}_p(L)) \iff p(x) \land x \in \text{values}(L) \text{ for all } x \in \mathbb{Z} \text{”} \).

We will prove \(Q(L) \) for \(L \in \text{Lists} \) by structural induction.

Base Case: Let \(x \in \mathbb{Z} \) be arbitrary.

LHS is \(x \in \text{values}(\text{filter}_p(\text{null})) \)

\[
\equiv x \in \text{values}(\text{null}) \quad \text{Def of } \text{filter}_p
\]

\[
\equiv x \in \emptyset \quad \text{Def of } \text{values}
\]

\[
\equiv \bot \quad \text{Def of } \emptyset
\]

RHS is \(p(x) \land x \in \text{values}(\text{null}) \)

\[
\equiv p(x) \land x \in \emptyset \quad \text{Def of } \text{values}
\]

\[
\equiv p(x) \land \bot \quad \text{Def of } \emptyset
\]

\[
\equiv \bot \quad \text{Domination}
\]

These are equivalent as required (LHS \(\equiv \bot \equiv \text{RHS} \)).

Since \(x \) was arbitrary, this shows that \(Q(\text{null}) \) holds.
Claim: \(\forall x \in \text{values}(\text{filter}_p(L)) \iff p(x) \land x \in \text{values}(L) \)

\[Q(L) := \text{“}x \in \text{values}(\text{filter}_p(L)) \iff p(x) \land x \in \text{values}(L) \text{“ for all } x \in \mathbb{Z}. \]

We will prove \(Q(L) \) for \(L \in \text{Lists} \) by structural induction.

Base Case: ... so \(Q(\text{null}) \) holds.

Inductive Hypothesis: Suppose \(Q(L) \) holds for an arbitrary list \(L \), i.e., we have \(x \in \text{values}(\text{filter}_p(L)) \iff p(x) \land x \in \text{values}(L) \).

Inductive Step: **Goal: Prove \(Q(\text{Node}(v, L)) \) for all \(v \in \mathbb{Z} \)**
Claim: \(v \in \text{values}(\text{filter}_p(L)) \) iff \(p(x) \land x \in \text{values}(L) \)

\[Q(L) := \text{“}x \in \text{values}(\text{filter}_p(L)) \text{ iff } p(x) \land x \in \text{values}(L) \text{ for all } x \in \mathbb{Z}\text{“}. \]

We will prove \(Q(L) \) for \(L \in \text{Lists} \) by structural induction.

Base Case: ... so \(Q(\text{null}) \) holds.

Inductive Hypothesis: Suppose \(Q(L) \) holds for an arbitrary list \(L \), i.e., we have \(x \in \text{values}(\text{filter}_p(L)) \) iff \(p(x) \land x \in \text{values}(L) \).

Inductive Step: **Goal: Prove** \(Q(\text{Node}(v, L)) \) **for all** \(v \in \mathbb{Z} \)

Let \(v, x \in \mathbb{Z} \) be arbitrary. We go by cases. Suppose \(\neg p(v) \).

\[
x \in \text{values}(\text{filter}_p(\text{Node}(v, L))) \\
\equiv x \in \text{values}(\text{filter}_p(L)) \quad \text{Def } \text{filter}_p \\
\equiv p(x) \land x \in \text{values}(L) \quad \text{IH} \\
\]

... \[
\equiv p(x) \land x \in \text{values}(\text{Node}(v, L))
\]
Claim: \(v \in \text{values}(\text{filter}_p(L)) \iff p(x) \land x \in \text{values}(L) \)

\[Q(L) := "x \in \text{values}(\text{filter}_p(L)) \iff p(x) \land x \in \text{values}(L) \text{ for all } x \in \mathbb{Z}." \]

We will prove \(Q(L) \) for \(L \in \text{Lists} \) by structural induction.

Base Case: ... so \(Q(\text{null}) \) holds.

Inductive Hypothesis: Suppose \(Q(L) \) holds for an arbitrary list \(L \), i.e., we have \(x \in \text{values}(\text{filter}_p(L)) \iff p(x) \land x \in \text{values}(L) \).

Inductive Step: Goal: Prove \(Q(\text{Node}(v, L)) \) for all \(v \in \mathbb{Z} \)

Let \(v, x \in \mathbb{Z} \) be arbitrary. We go by cases. Suppose \(\neg p(v) \).

\[
x \in \text{values}(\text{filter}_p(\text{Node}(v, L)))
\equiv x \in \text{values}(\text{filter}_p(L)) \quad \text{Def } \text{filter}_p
\equiv p(x) \land x \in \text{values}(L) \quad \text{IH}
\]

If \(\neg p(x) \), then this and \(p(x) \land x \in \text{values}(\text{Node}(v, L)) \) are equivalent as they are both false. So now suppose \(p(x) \)...
Claim: \(v \in \text{values}(\text{filter}_p(L)) \) iff \(p(x) \land x \in \text{values}(L) \)

\(Q(L) := \text{“}x \in \text{values}(\text{filter}_p(L)) \text{ iff } p(x) \land x \in \text{values}(L) \text{ for all } x \in \mathbb{Z}\text{“}. \)

We will prove \(Q(L) \) for \(L \in \text{Lists} \) by structural induction.

Base Case: ... so \(Q(\text{null}) \) holds.

Inductive Hypothesis: Suppose \(Q(L) \) holds for an arbitrary list \(L \), i.e., we have \(x \in \text{values}(\text{filter}_p(L)) \) iff \(p(x) \land x \in \text{values}(L) \).

Inductive Step: Goal: Prove \(Q(\text{Node}(v, L)) \) for all \(v \in \mathbb{Z} \)

Let \(v, x \in \mathbb{Z} \) be arbitrary. We go by cases. Suppose \(\neg p(v) \).

\[
\begin{align*}
x & \in \text{values}(\text{filter}_p(\text{Node}(v, L))) \\
\equiv x & \in \text{values}(\text{filter}_p(L)) \quad \text{Def } \text{filter}_p \\
\equiv p(x) & \land x \in \text{values}(L) \quad \text{IH} \\
\quad \text{suppose } p(x) ...
\end{align*}
\]

\[
\begin{align*}
\equiv p(x) & \land (x \in \{v\} \lor x \in \text{values}(L)) \\
\equiv p(x) & \land (x \in \{v\} \cup \text{values}(L)) \quad \text{Def } \cup \\
\equiv p(x) & \land (x \in \text{values}(\text{Node}(v, L))) \quad \text{Def } \text{values}
\end{align*}
\]
Claim: \(v \in \text{values}(\text{filter}_p(L)) \) iff \(p(x) \land x \in \text{values}(L) \)

\[Q(L) := “x \in \text{values}(\text{filter}_p(L)) \text{ iff } p(x) \land x \in \text{values}(L) \text{ for all } x \in \mathbb{Z}” \]

We will prove \(Q(L) \) for \(L \in \text{Lists} \) by structural induction.

Base Case: ... so \(Q(\text{null}) \) holds.

Inductive Hypothesis: Suppose \(Q(L) \) holds for an arbitrary list \(L \), i.e., we have \(x \in \text{values}(\text{filter}_p(L)) \) iff \(p(x) \land x \in \text{values}(L) \).

Inductive Step: **Goal:** Prove \(Q(\text{Node}(v, L)) \) for all \(v \in \mathbb{Z} \)

Let \(v, x \in \mathbb{Z} \) be arbitrary. We go by cases. Suppose \(\lnot p(v) \).

\[
\begin{align*}
x \in \text{values}(\text{filter}_p(\text{Node}(v, L))) & \equiv x \in \text{values}(\text{filter}_p(L)) & \text{Def } \text{filter}_p \\
& \equiv p(x) \land x \in \text{values}(L) & \text{IH} \\
& \equiv p(x) \land (F \lor x \in \text{values}(L)) & \text{Identity} \\
& \equiv p(x) \land (x \in \{v\} \lor x \in \text{values}(L)) & ?? \\
& \equiv p(x) \land (x \in \{v\} \cup \text{values}(L)) & \text{Def } \cup \\
& \equiv p(x) \land (x \in \text{values}(\text{Node}(v, L))) & \text{Def } \text{values}
\end{align*}
\]
Claim: \(v \in \text{values}(\text{filter}_p(L)) \) iff \(p(x) \land x \in \text{values}(L) \)

\[
Q(L) := \text{“} x \in \text{values}(\text{filter}_p(L)) \text{ iff } p(x) \land x \in \text{values}(L) \text{ for all } x \in \mathbb{Z} \text{”}.
\]

We will prove \(Q(L) \) for \(L \in \text{Lists} \) by structural induction.

Base Case: ... so \(Q(\text{null}) \) holds.

Inductive Hypothesis: Suppose \(Q(L) \) holds for an arbitrary list \(L \), i.e., we have \(x \in \text{values}(\text{filter}_p(L)) \) iff \(p(x) \land x \in \text{values}(L) \).

Inductive Step: Goal: Prove \(Q(\text{Node}(v, L)) \) for all \(v \in \mathbb{Z} \)

Let \(v, x \in \mathbb{Z} \) be arbitrary. We go by cases. Suppose \(\neg p(v) \).

\[
x \in \text{values}(\text{filter}_p(\text{Node}(v, L))) \equiv x \in \text{values}(\text{filter}_p(L)) \equiv p(x) \land x \in \text{values}(L) \equiv p(x) \land (\neg p(v) \lor x \in \text{values}(L)) \equiv p(x) \land (x \not\in \{v\} \lor x \in \text{values}(L)) \equiv p(x) \land (x \not\in \{v\} \cup \text{values}(L)) \equiv p(x) \land (x \in \text{values}(\text{Node}(v, L)))
\]
Claim: \(v \in \text{values}(\text{filter}_p(L)) \) iff \(p(x) \land x \in \text{values}(L) \)

\[Q(L) := \text{“}x \in \text{values}(\text{filter}_p(L)) \text{ iff } p(x) \land x \in \text{values}(L) \text{ for all } x \in \mathbb{Z}\text{”}. \]

We will prove \(Q(L) \) for \(L \in \text{Lists} \) by structural induction.

Base Case: ... so \(Q(\text{null}) \) holds.

Inductive Hypothesis: Suppose \(Q(L) \) holds for an arbitrary list \(L \), i.e., we have \(x \in \text{values}(\text{filter}_p(L)) \) iff \(p(x) \land x \in \text{values}(L) \).

Inductive Step: Goal: Prove \(Q(\text{Node}(v, L)) \) for all \(v \in \mathbb{Z} \)

Let \(v, x \in \mathbb{Z} \) be arbitrary. We go by cases. Suppose \(\neg p(v) \).

\[
\begin{align*}
x & \in \text{values}(\text{filter}_p(\text{Node}(v, L))) \\
& \equiv ... \\
& \equiv p(x) \land (x \in \text{values}(\text{Node}(v, L)))
\end{align*}
\]

Thus, by cases (\(p(x) \land \neg p(x) \)), the claimed bicondition holds.

Since \(x \) was arbitrary, we have shown \(Q(\text{Node}(v, L)) \).
Claim: \(\forall v \in \text{values}(\text{filter}_{p}(L)) \iff p(x) \land x \in \text{values}(L) \)

\(Q(L) := \text{“} x \in \text{values}(\text{filter}_{p}(L)) \iff p(x) \land x \in \text{values}(L) \text{ for all } x \in \mathbb{Z} \text{”} \).

We will prove \(Q(L) \) for \(L \in \text{Lists} \) by structural induction.

Base Case: ... so \(Q(\text{null}) \) holds.

Inductive Hypothesis: Suppose \(Q(L) \) holds for an arbitrary list \(L \), i.e., we have \(x \in \text{values}(\text{filter}_{p}(L)) \iff p(x) \land x \in \text{values}(L) \).

Inductive Step: Goal: Prove \(Q(\text{Node}(v, L)) \) for all \(v \in \mathbb{Z} \)

Let \(v, x \in \mathbb{Z} \) be arbitrary. We go by cases. Suppose \(p(v) \).

\[
\begin{align*}
x \in \text{values}(\text{filter}_{p}(\text{Node}(v, L))) & \equiv x \in \text{values}(\text{Node}(v, \text{filter}_{p}(L))) & \text{Def } \text{filter}_{p} \\
& \equiv x \in \{v\} \cup \text{values}(\text{filter}_{p}(L)) & \text{Def } \text{values} \\
& \equiv x \in \{v\} \lor x \in \text{values}(\text{filter}_{p}(L)) & \text{Def } \cup \\
& \equiv x \in \{v\} \lor (p(x) \land x \in \text{values}(L)) & \text{IH}
\end{align*}
\]
Claim: \(v \in \text{values}(\text{filter}_p(L)) \iff p(x) \land x \in \text{values}(L) \)

\(Q(L) := "x \in \text{values}(\text{filter}_p(L)) \iff p(x) \land x \in \text{values}(L) \) for all \(x \in \mathbb{Z} ". \)

We will prove \(Q(L) \) for \(L \in \text{Lists} \) by structural induction.

Base Case: ... so \(Q(\text{null}) \) holds.

Inductive Hypothesis: Suppose \(Q(L) \) holds for an arbitrary list \(L \), i.e., we have \(x \in \text{values}(\text{filter}_p(L)) \iff p(x) \land x \in \text{values}(L) \).

Inductive Step: Goal: Prove \(Q(\text{Node}(v, L)) \) for all \(v \in \mathbb{Z} \)

Let \(v, x \in \mathbb{Z} \) be arbitrary. We go by cases. Suppose \(p(v) \).

\begin{align*}
 x \in \text{values}(\text{filter}_p(\text{Node}(v, L))) & \\
 \equiv x \in \text{values}(\text{Node}(v, \text{filter}_p(L))) & \text{Def \text{filter}_p} \\
 \equiv x \in \{v\} \cup \text{values}(\text{filter}_p(L)) & \text{Def \text{values}} \\
 \equiv x \in \{v\} \lor x \in \text{values}(\text{filter}_p(L)) & \text{Def \lor} \\
 \equiv x \in \{v\} \lor (p(x) \land x \in \text{values}(L)) & \text{IH} \\
 \equiv (x \in \{v\} \lor p(x)) \land (x \in \{v\} \lor x \in \text{values}(L)) & \text{Distributivity} \\
 \equiv (x \in \{v\} \lor p(x)) \land (x \in \text{values}(\text{Node}(v, L))) & \text{Def \lor, \text{values}}
\end{align*}
Claim: \(v \in \text{values}(\text{filter}_p(L)) \) iff \(p(x) \land x \in \text{values}(L) \)

\[Q(L) := \text{"}x \in \text{values}(\text{filter}_p(L)) \text{ iff } p(x) \land x \in \text{values}(L) \text{ for all } x \in \mathbb{Z}\text{"}. \]

We will prove \(Q(L) \) for \(L \in \text{Lists} \) by structural induction.

Base Case: ... so \(Q(\text{null}) \) holds.

Inductive Hypothesis: Suppose \(Q(L) \) holds for an arbitrary list \(L \), i.e., we have \(x \in \text{values}(\text{filter}_p(L)) \) iff \(p(x) \land x \in \text{values}(L) \).

Inductive Step: **Goal: Prove** \(Q(\text{Node}(v, L)) \) **for all** \(v \in \mathbb{Z} \)

Let \(v, x \in \mathbb{Z} \) be arbitrary. We go by cases. Suppose \(p(v) \).

\[x \in \text{values}(\text{filter}_p(\text{Node}(v, L))) \]
\[\equiv ... \]
\[\equiv (x \in \{v\} \lor p(x)) \land (x \in \text{values}(\text{Node}(v, L))) \]

If \(x \in \{v\} \) is false, then the first part is \(F \lor p(x) \equiv p(x) \).

If true, then \(x = v \), and first part and \(p(x) \) are both true. Thus,
\[\equiv p(x) \land (x \in \text{values}(\text{Node}(v, L))) \]
Claim: \(v \in \text{values}(\text{filter}_p(L)) \) iff \(p(x) \land x \in \text{values}(L) \)

\[Q(L) := "x \in \text{values}(\text{filter}_p(L)) \text{ iff } p(x) \land x \in \text{values}(L) \text{ for all } x \in \mathbb{Z}". \]

We will prove \(Q(L) \) for \(L \in \text{Lists} \) by structural induction.

Base Case: ... so \(Q(\text{null}) \) holds.

Inductive Hypothesis: Suppose \(Q(L) \) holds for an arbitrary list \(L \), i.e., we have \(x \in \text{values}(\text{filter}_p(L)) \text{ iff } p(x) \land x \in \text{values}(L) \).

Inductive Step: **Goal:** Prove \(Q(\text{Node}(v, L)) \) for all \(v \in \mathbb{Z} \)

Let \(v, x \in \mathbb{Z} \) be arbitrary. We go by cases. Suppose \(p(v) \).

\[
x \in \text{values}(\text{filter}_p(\text{Node}(v, L))) \\
\equiv ... \\
\equiv p(x) \land (x \in \text{values}(\text{Node}(v, L)))
\]

Thus, by cases, the claimed bicondition holds.

Since \(x \) was arbitrary, we have shown \(Q(\text{Node}(v, L)) \).

Hence, we have shown \(Q(L) \) for all lists by structural induction.
Theoretical Computer Science
Languages: Sets of Strings

• Subsets of strings are called languages

• Examples:
 – $\Sigma^* = \text{All strings over alphabet } \Sigma$
 – Palindromes over Σ
 – Binary strings that don’t have a 0 after a 1
 – Binary strings with an equal # of 0’s and 1’s
 – Legal variable names in Java/C/C++
 – Syntactically correct Java/C/C++ programs
 – Valid English sentences
Foreword on Intro to Theory C.S.

• Look at different ways of defining languages
• See which are more expressive than others
 – i.e., which can define more languages

• Later: connect ways of defining languages to different types of (restricted) computers
 – computers capable of recognizing those languages
 i.e., distinguishing strings in the language from not

• Consequence: computers that recognize more expressive languages are more powerful
Regular Expressions

Regular expressions over Σ

• Basis:
 - ε is a regular expression (could also include \emptyset)
 - a is a regular expression for any $a \in \Sigma$

• Recursive step:
 - If A and B are regular expressions then so are:
 - $A \cup B$
 - AB
 - A^*
Each Regular Expression is a “pattern”

\(\varepsilon \) matches only the **empty string**

\(a \) matches only the one-character string \(a \)

\(A \cup B \) matches all strings that either \(A \) matches or \(B \) matches (or both)

\(AB \) matches all strings that have a first part that \(A \) matches followed by a second part that \(B \) matches

\(A^* \) matches all strings that have any number of strings (even 0) that \(A \) matches, one after another (\(\varepsilon \cup A \cup AA \cup AAA \cup ... \))

Definition of the *language* matched by a regular expression
Language of a Regular Expression

The language defined by a regular expression:

\[
L(\varepsilon) = \{ \varepsilon \} \\
L(a) = \{ a \} \\
L(A \cup B) = L(A) \cup L(B) \\
L(AB) = \{ x \cdot y \mid x \in L(A), y \in L(B) \} \\
L(A^*) = \bigcup_{n=0}^{\infty} A^n
\]

\(A^n \) defined recursively by

\[
A^0 = \emptyset \\
A^{n+1} = A^n A
\]
Examples

001*

0*1*
Examples

001^*

\{00, 001, 0011, 00111, ...\}

0^*1^*

Any number of 0’s followed by any number of 1’s
Examples

\((0 \cup 1) \ 0 \ (0 \cup 1) \ 0\)

\((0*1*)^*\)
Examples

\((0 \cup 1) \ 0 \ (0 \cup 1) \ 0\)

\{0000, 0010, 1000, 1010\}

\((0*1*)^*\)

All binary strings
Examples

$$(0 \cup 1)^* 0110 (0 \cup 1)^*$$

$$(00 \cup 11)^* (01010 \cup 10001) (0 \cup 1)^*$$
Examples

\((0 \cup 1)^* \text{0110} (0 \cup 1)^*\)

Binary strings that contain “0110”

\((00 \cup 11)^* (01010 \cup 10001) (0 \cup 1)^*\)

Binary strings that begin with pairs of characters followed by “01010” or “10001”
Examples

• All binary strings that have an even # of 1’s
Examples

• All binary strings that have an even # of 1’s

e.g., 0*(10*10*)*
Examples

• All binary strings that have an even # of 1’s

 e.g., \(0^*(10^*10^*)^*\)

• All binary strings that *don’t* contain 101
Examples

- All binary strings that have an even # of 1’s

 e.g., $0^* (10^* 10^*)^*$

- All binary strings that don’t contain 101

 e.g., $0^* (1 \cup 1000^*)^* (0^* \cup 10^*)$

 at least two 0s between 1s
Regular Expressions in Practice

- Used to define the “tokens”: e.g., legal variable names, keywords in programming languages and compilers
- Used in `grep`, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of PHP
- We can use regular expressions in programs to process strings!
Regular Expressions in Java

- Pattern p = Pattern.compile("a*b");
- Matcher m = p.matcher("aaaaab");
- boolean b = m.matches();

 [01] a 0 or a 1 ^ start of string $ end of string
 [0–9] any single digit \. period \, comma \- minus
 . any single character
 ab a followed by b (AB)
 (a|b) a or b (A ∪ B)
 a? zero or one of a (A ∪ ε)
 a* zero or more of a A*
 a+ one or more of a AA*

- e.g. ^[\-+]? [0–9] *(\. | \,)? [0–9]+$

 General form of decimal number e.g. 9.12 or -9,8 (Europe)
Limitations of Regular Expressions

- Not all languages can be specified by regular expressions
- Even some easy things like
 - Palindromes
 - Strings with equal number of 0’s and 1’s
- But also more complicated structures in programming languages
 - Matched parentheses
 - Properly formed arithmetic expressions
 - etc.
A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving

- A finite set V of variables that can be replaced
- Alphabet Σ of terminal symbols that can’t be replaced
- One variable, usually S, is called the start symbol

The substitution rules involving a variable A, written as

$$A \to w_1 \mid w_2 \mid \cdots \mid w_k$$

where each w_i is a string of variables and terminals

- that is $w_i \in (V \cup \Sigma)^*$
How CFGs generate strings

• Begin with start symbol S

• If there is some variable A in the current string you can replace it by one of the w’s in the rules for A

 $A \rightarrow w_1 \mid w_2 \mid \cdots \mid w_k$

 – Write this as $xAy \Rightarrow xwy$

 – Repeat until no variables left

• The set of strings the CFG describes are all strings, containing no variables, that can be generated in this manner (after a finite number of steps)
Example Context-Free Grammars

Example: \(S \rightarrow 0S0 | 1S1 | 0 | 1 | \varepsilon \)
Example Context-Free Grammars

Example: $S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \varepsilon$

The set of all binary palindromes
Example Context-Free Grammars

Example: $S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \varepsilon$

The set of all binary palindromes

Example: $S \rightarrow 0S \mid S1 \mid \varepsilon$
Example Context-Free Grammars

Example: $S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \varepsilon$

The set of all binary palindromes

Example: $S \rightarrow 0S \mid S1 \mid \varepsilon$

0^*1^*