CSE 311: Foundations of Computing

Lecture 20: Structural Induction, Regular Expressions

OH NO! THE KILLER || BUT TD FIND THEM WE'D HAVE T0 SEARCH
WHENEVER T LEARN A | | MUST HAVE FOLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR
NEw SKILL I CoNCoCT | [HER ON VACATION'} swemm;s FORMATTED LIKE AN ADDRESS!

ELABORATE FANTASY

s et f £ %ﬁm‘ s o
(v
O lan
L K
A 1R afie




Last Time: Recursive Definitions

* Any recursively defined set can be translated into
a Java class

* Any recursively defined function can be translated
into a Java function

— some (but not all) can be written more cleanly as loops

* Recursively defined functions and sets are our
mathematical models of code and the data it
operates on



Last time: Structural Induction

How to prove V x € S, P(x) is true:

Base Case: Show that P(u) is true for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis
Conclude thatV x € S, P(x)



Linked Lists of Integers

e Basis: null € Lists

* Recursive step:
If L € Lists and v € Z, then Node(v, L) € Lists

Examples:
— null ]
— Node(1, null) 1]
— Node(1, Node(2, null)) 1, 2]



Functions on Linked Lists

Set of numbers stored in a list:
e values(null)=0
* values(Node(v, L)) = {v} U values(L)

Example:
values(Node(1, Node(2, null))
= {1} U values(Node(2, null) Def of values
= {1} U {2} U values(null) Def of values
={1}U{2}U @ Def of values

={1, 2} Def of U



Functions on Linked Lists

Remove the numbers that don’t satisfy p(v):
+ filter,(null) = null

* filter,(Node(v, L)) = Node(y, filter,(L)) if p(v)

* filter,(Node(v, L)) = filter,(L) otherwise

Example: p(v) :=v<2
filter (Node(1, Node(2, null)))
= Node(1, filter,(Node(2, null))) Def filter,
= Node(1, filter (null)) Def filter,
= Node(1, null) Def filter,




Claim: x € values(filter(L)) iff p(x) A x € values(L)




Claim: x € values(filter(L)) iff p(x) A x € values(L)

Q(L) := “x € values(filter (L)) iff p(x) A x € values(L) for all x € Z".
We will prove Q(L) for L € Lists by structural induction.



Claim: x € values(filter(L)) iff p(x) A x € values(L)

Q(L) := “x € values(filter (L)) iff p(x) A x € values(L) for all x € Z".
We will prove Q(L) for L € Lists by structural induction.

Base Case: Let x € Z be arbitrary.
LHS is x € values(filter,(null))

= x € values(null) Def of filter,

=XEQP Def of values

=F Def of @
RHS is p(x) A x € values(null)

=p(X) AXE QD Def of values

=p(x) A F Def of @

=F Domination

These are equivalent as required (LHS = F = RHS).
Since x was arbitrary, this shows that Q(null) holds.



Claim: x € values(filter(L)) iff p(x) A x € values(L)

Q(L) := “x € values(filter (L)) iff p(x) A x € values(L) for all x € Z".
We will prove Q(L) for L € Lists by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,
i.e., we have x € values(filter (L)) iff p(x) A x € values(L).

Inductive Step:|Goal: Prove Q(Node(v, L)) for all v € Z




Claim: v € values(filter (L)) iff p(x) A x € values(L)

Q(L) := “x € values(filter (L)) iff p(x) A x € values(L) for all x € Z".
We will prove Q(L) for L € Lists by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,
i.e., we have x € values(filter (L)) iff p(x) A x € values(L).

Inductive Step:|Goal: Prove Q(Node(v, L)) for all v € Z
Let v, x € Z be arbitrary. We go by cases. Suppose —p(v).

x € values(filter,(Node(v, L)))
= x € values(filter (L)) Def filter,
= p(x) A x € values(L) IH

E p(x) A x € values(Node(y, L))



Claim: v € values(filter (L)) iff p(x) A x € values(L)

Q(L) := “x € values(filter (L)) iff p(x) A x € values(L) for all x € Z".
We will prove Q(L) for L € Lists by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,
i.e., we have x € values(filter (L)) iff p(x) A x € values(L).

Inductive Step:|Goal: Prove Q(Node(v, L)) for all v € Z
Let v, x € Z be arbitrary. We go by cases. Suppose —p(v).

x € values(filter,(Node(v, L)))
= x € values(filter (L)) Def filter,
= p(x) A x € values(L) IH

If —p(x), then this and p(x) A x € values(Node(v, L)) are
equivalent as they are both false. So now suppose p(x)...




Claim: v € values(filter (L)) iff p(x) A x € values(L)

Q(L) := “x € values(filter (L)) iff p(x) A x € values(L) for all x € Z".
We will prove Q(L) for L € Lists by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,
i.e., we have x € values(filter (L)) iff p(x) A x € values(L).

Inductive Step:|Goal: Prove Q(Node(v, L)) for all v € Z
Let v, x € Z be arbitrary. We go by cases. Suppose —p(v).

x € values(filter,(Node(v, L)))
= x € values(filter (L)) Def filter,
= p(x) A x € values(L) IH

suppose p(x)...

E p(x) A (x € {v} v x € values(L))
= p(x) A (X € {v} U values(L)) Def U
= p(x) A (x € values(Node(v, L))) Def values



Claim: v € values(filter (L)) iff p(x) A x € values(L)

Q(L) := “x € values(filter (L)) iff p(x) A x € values(L) for all x € Z".
We will prove Q(L) for L € Lists by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,
i.e., we have x € values(filter (L)) iff p(x) A x € values(L).

Inductive Step:|Goal: Prove Q(Node(v, L)) for all v € Z
Let v, x € Z be arbitrary. We go by cases. Suppose —p(v).
x € values(filter,(Node(v, L)))

= x € values(filter (L)) Def filter,

= p(x) A x € values(L) IH suppose p(x
= p(x) A (F v x € values(L)) |dentity
= p(x) A (X € {v} v x € values(L)) ?7

= p(x) A (x € {v} U values(L)) Def U

= p(x) A (x € values(Node(v, L))) Def values



Claim: v € values(filter (L)) iff p(x) A x € values(L)

Q(L) := “x € values(filter (L)) iff p(x) A x € values(L) for all x € Z".
We will prove Q(L) for L € Lists by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,
i.e., we have x € values(filter (L)) iff p(x) A x € values(L).

Inductive Step:|Goal: Prove Q(Node(v, L)) for all v € Z
Let v, x € Z be arbitrary. We go by cases. Suppose —p(v).
x € values(filter,(Node(v, L)))

= x € values(filter (L)) Def filter,

= p(x) A x € values(L) IH

= b(x) A (F v x € values(L)) dentity | S1PPose PR
=p(x) A (x €E{v} v x Evalues(L))  x#vas p(x) but —p(v)
= p(x) A (x € {v} U values(L)) Def U

= p(x) A (x € values(Node(v, L))) Def values



Claim: v € values(filter (L)) iff p(x) A x € values(L)

Q(L) := “x € values(filter (L)) iff p(x) A x € values(L) for all x € Z".
We will prove Q(L) for L € Lists by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,
i.e., we have x € values(filter (L)) iff p(x) A x € values(L).

Inductive Step:|Goal: Prove Q(Node(v, L)) for all v € Z
Let v, x € Z be arbitrary. We go by cases. Suppose —p(v).
x € values(filter,(Node(v, L)))

E)'(x) A (x € values(Node(v, L)))

Thus, by cases (p(x) & —p(x)), the claimed bicondition holds.
Since x was arbitrary, we have shown Q(Node(v, L)).



Claim: v € values(filter (L)) iff p(x) A x € values(L)

Q(L) := “x € values(filter (L)) iff p(x) A x € values(L) for all x € Z".
We will prove Q(L) for L € Lists by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,
i.e., we have x € values(filter (L)) iff p(x) A x € values(L).

Inductive Step:|Goal: Prove Q(Node(v, L)) for all v € Z
Let v, x € Z be arbitrary. We go by cases. Suppose p(v).
x € values(filter,(Node(v, L)))

= x € values(Node(y, filter(L))) Def filter,
=X € {v} U values(filter,(L)) Def values
=X € {v} v x € values(filter (L)) Def U

=X € {v} Vv (p(x) A x € values(L)) IH



Claim: v € values(filter (L)) iff p(x) A x € values(L)

Q(L) := “x € values(filter (L)) iff p(x) A x € values(L) for all x € Z".
We will prove Q(L) for L € Lists by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,
i.e., we have x € values(filter (L)) iff p(x) A x € values(L).

Inductive Step:|Goal: Prove Q(Node(v, L)) for all v € Z
Let v, x € Z be arbitrary. We go by cases. Suppose p(v).
x € values(filter,(Node(v, L)))

= x € values(Node(y, filter(L))) Def filter,
=X € {v} U values(filter,(L)) Def values
=X € {v} v x € values(filter (L)) Def U

=X € {v} Vv (p(x) A x € values(L)) IH

(x € {v} Vv p(x)) A (x € {v} Vv x € values(L)) Distributivity
(x € {v} v p(x)) A (x € values(Node(v, L))) Def U, values



Claim: v € values(filter (L)) iff p(x) A x € values(L)

Q(L) := “x € values(filter (L)) iff p(x) A x € values(L) for all x € Z".
We will prove Q(L) for L € Lists by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,
i.e., we have x € values(filter (L)) iff p(x) A x € values(L).

Inductive Step:|Goal: Prove Q(Node(v, L)) for all v € Z
Let v, x € Z be arbitrary. We go by cases. Suppose p(v).
x € values(filter,(Node(v, L)))

= (x € {v} v p(x)) A (x € values(Node(v, L)))

If x € {v} is false, then the first part is F v p(x) = p(x).

If true, then x = v, and first part and p(x) are both true. Thus,
= p(x) A (x € values(Node(v, L)))



Claim: v € values(filter (L)) iff p(x) A x € values(L)

Q(L) := “x € values(filter (L)) iff p(x) A x € values(L) for all x € Z".
We will prove Q(L) for L € Lists by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,
i.e., we have x € values(filter (L)) iff p(x) A x € values(L).

Inductive Step:|Goal: Prove Q(Node(v, L)) for all v € Z
Let v, x € Z be arbitrary. We go by cases. Suppose p(v).
x € values(filter,(Node(v, L)))

E)'(x) A (x € values(Node(v, L)))

Thus, by cases, the claimed bicondition holds.
Since x was arbitrary, we have shown Q(Node(v, L)).

Hence, we have shown Q(L) for all lists by structural induction.



Theoretical Computer Science



Languages: Sets of Strings

* Subsets of strings are called languages

 Examples:
— 2" = All strings over alphabet =
— Palindromes over X
— Binary strings that don’t have a O aftera 1
— Binary strings with an equal # of O’'s and 1’s
— Legal variable names in Java/C/C++
— Syntactically correct Java/C/C++ programs
— Valid English sentences



Foreword on Intro to Theory C.S.

* Look at different ways of defining languages

 See which are more expressive than others
— i.e., which can define more languages

e Later: connect ways of defining languages to
different types of (restricted) computers

— computers capable of recognizing those languages
i.e., distinguishing strings in the language from not

 Consequence: computers that recognize more
expressive languages are more powerful



Regular Expressions

Regular expressions over X

* Basis:
€ is a regular expression (could also include @)
a is a regular expression forany a € ~

* Recursive step:
If A and B are regular expressions then so are:
AUB
AB
A*



Each Regular Expression is a “pattern”

€ matches only the empty string
a matches only the one-character string a

A U B matches all strings that either A matches
or B matches (or both)

AB matches all strings that have a first part that A
matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another (e U AU AA U AAA U ...)

Definition of the language
matched by a regular expression




Language of a Regular Expression

The language defined by a regular expression:
L(e) = {¢}
L(a) = {a}
LAUB) =L(A)VUL(B)
L(AB) ={xey|x € L(A),y € L(B)}
L(A%) = Upzo A"
A™ defined recursively by
A =0
AL — A g



Examples

001*

O*1*



Examples

001*

{00, 001, 0011, 00111, ...}

O*1*

Any number of O’s followed by any number of 1’s



Examples

(OoOul)0O0ulo

(0*1*)*



Examples

(OoOul)0O0ulo

{0000, 0010, 1000, 1010}

(0*1*)*

All binary strings



Examples

Ou*0110 (0L 1)*

(00 U 11)* (01010 L 10001) (O L 1)*



Examples

Ou1)*0110 (0L 1)*

Binary strings that contain “0110”

(00 U 11)* (01010 L 10001) (O L 1)*

Binary strings that begin with pairs of characters
followed by “01010” or “10001”



Examples

* All binary strings that have an even # of 1’s



Examples

* All binary strings that have an even # of 1’s

e.g., 0%(10%10%)*



Examples

* All binary strings that have an even # of 1’s

e.g., 0%(10%10%)*

* All binary strings that don’t contain 101



Examples

* All binary strings that have an even # of 1’s

e.g., 0%(10%10%)*

* All binary strings that don’t contain 101

e.g., 0%(1 U 1000*)*(0* U 10%)

at least two Os between 1s



Regular Expressions in Practice

* Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

* Used in grep, a program that does pattern matching
searches in UNIX/LINUX

e Pattern matching using regular expressions is an essential
feature of PHP

* We can use regular expressions in programs to process
strings!



Regular Expressions in Java

* Pattern p = Pattern.compile("a*b");
* Matcher m = p.matcher("aaaaab");

* boolean b = m.matches();
[01] aOoral Astartofstring $ end of string
[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB)
(a|lb) aorb (A U B)
av zero or one of a (AU Eg)
a* zero or more of a A*

a+ one or more of a AA*

* eg ~[\-+]1?[0-9]1*(\.|\,)?[0-9]+S
General form of decimal number e.g. 9.12 or -9,8 (Europe)



Limitations of Regular Expressions

* Not all languages can be specified by regular
expressions

* Even some easy things like
— Palindromes
— Strings with equal number of O's and 1's

 But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— etc.



Context-Free Grammars

* A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving

— Afinite set V of variables that can be replaced

— Alphabet X of terminal symbols that can’t be replaced
— One variable, usually S, is called the start symbol

* The substitution rules involving a variable A, written as
A—wy| wy |- | w

where each w; is a string of variables and terminals
—thatisw, € (VU X)"



How CFGs generate strings

* Begin with start symbol S

* If there is some variable A in the current string you
can replace it by one of the w’s in the rules for A

—A-ow | wy || wy
— Write thisas xAy = xwy
— Repeat until no variables left

* The set of strings the CFG describes are all strings,
containing no variables, that can be generated in this
manner (after a finite number of steps)



Example Context-Free Grammars

Example: S—>0S0|1S1|0|1]¢



Example Context-Free Grammars

Example: S—>0S0|1S1|0|1]¢

The set of all binary palindromes



Example Context-Free Grammars

Example: S—>0S0|1S1|0|1]¢

The set of all binary palindromes

Example: S—>0S|S1]|e¢



Example Context-Free Grammars

Example: S—>0S0|1S1|0|1]¢

The set of all binary palindromes

Example: S—>0S|S1]|e¢

0*1*



