CSE 311: Foundations of Computing

Lecture 19: Recursively Defined Sets & Structural Induction

Administrivia

- Midterm in class Friday
- Midterm review video
 - see Panopto Recordings tab on Canvas
- Midterm review session
 - Thursday at 1:30 in ECE 125
 - come with questions
- HW6 released on Saturday start early
 - 2 strong induction, 2 structural induction, 2 string problems

Last time: Recursive Definition of Sets

Recursive definition of set S

- **Basis Step:** $0 \in S$
- Recursive Step: If $x \in S$, then $x + 2 \in S$
- Exclusion Rule: Every element in S follows from the basis step and a finite number of recursive steps.

Can already build sets using { x | P(x) } notation

- these are constructive definitions
- translates more naturally into Java etc.

- Any recursively defined set can be translated into a Java class
- Any recursively defined function can be translated into a Java function
 - some (but not all) can be written more cleanly as loops
- Recursively defined functions and sets are our mathematical models of code and the data it operates on

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements *w* constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Last time: Structural vs. Ordinary Induction

Ordinary induction is a special case of structural induction:

Recursive definition of \mathbb{N}

Basis: $0 \in \mathbb{N}$

Recursive step: If $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$

Conclude that $\forall x \in S, P(x)$

Last time: Every element of *S* is divisible by 3.

- **1.** Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3 | 6 and 3 | 15 so P(6) and P(15) are true
- **3. Inductive Hypothesis:** Suppose that P(x) and P(y) are true for some arbitrary $x,y \in S$
- **4. Inductive Step:** Goal: Show P(x+y)

Since P(x) is true, 3 | x and so x=3m for some integer m and since P(y) is true, 3 | y and so y=3n for some integer n. Therefore x+y=3m+3n=3(m+n) and thus 3 | (x+y).

Hence P(x+y) is true.

5. Therefore by induction 3 | x for all $x \in S$.

Basis: $6 \in S$; $15 \in S$; **Recursive:** if $x, y \in S$ then $x + y \in S$

Rooted Binary Trees

- Basis: is a rooted binary tree
- Recursive step:

Defining Functions on Rooted Binary Trees

• size(•) = 1

• size
$$\left(\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right) = 1 + size(\mathbf{T}_1) + size(\mathbf{T}_2)$$

• height(•) = 0

• height
$$\left(\begin{array}{c} & & \\$$

1. Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and $2^{0+1}-1=2^{1}-1=1$ so P(•) is true.

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size(T_k) $\leq 2^{height(T_k) + 1} 1$ for k=1,2

4. Inductive Step:

Goal: Prove P(

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size(T_k) $\leq 2^{height(T_k) + 1} 1$ for k=1,2
- 4. Inductive Step:

Goal: Prove P(

 $\leq 2^{\text{height}} (2^{\text{height}})^{+1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size $(T_k) \le 2^{height(T_k) + 1} 1$ for k=1,2
- 4. Inductive Step: By def, size(T_1 , T_2) $=1+size(T_1)+size(T_2)$ $\leq 1+2^{height(T_1)+1}-1+2^{height(T_2)+1}-1$ by IH for T_1 and T_2 $\leq 2^{height(T_1)+1}+2^{height(T_2)+1}-1$ $\leq 2(2^{max(height(T_1),height(T_2))+1})-1$ $\leq 2(2^{height(A)}) - 1 \leq 2^{height(A)}+1 - 1$ which is what we wanted to show.

5. So, the P(T) is true for all rooted binary trees by structural induction.

- An alphabet Σ is any finite set of characters
- The set Σ^* of strings over the alphabet Σ
 - example: {0,1}* is the set of binary strings
 0, 1, 00, 01, 10, 11, 000, 001, ... and ""
- Σ^* is defined recursively by
 - Basis: $\varepsilon \in \Sigma^*$ (ε is the empty string, i.e., "")
 - **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Functions on Recursively Defined Sets (on Σ^*)

```
Length:
len(\epsilon) = 0
len(wa) = len(w) + 1 for w \in \Sigma^*, a \in \Sigma
```

Concatenation:

$$x \bullet \varepsilon = x \text{ for } x \in \Sigma^*$$

 $x \bullet wa = (x \bullet w)a \text{ for } x \in \Sigma^*, a \in \Sigma$

Reversal:

$$\varepsilon^{R} = \varepsilon$$

(wa)^R = a • w^R for w $\in \Sigma^{*}$, a $\in \Sigma$

Number of c's in a string: $\#_c(\varepsilon) = 0$ $\#_c(wc) = \#_c(w) + 1$ for $w \in \Sigma^*$ $\#_c(wa) = \#_c(w)$ for $w \in \Sigma^*$, $a \in \Sigma$, $a \neq c$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(x \bullet w) = len(x) + len(w)$ for all x

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(x \bullet w) = len(x) + len(w)$ for all x

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let $a \in \Sigma$ and $x \in \Sigma^*$ be arbitrary. Then, len(x•wa)

= len(x)+len(wa)

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(x \bullet w) = len(x) + len(w)$ for all x

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let $a \in \Sigma$. Let $x \in \Sigma^*$. Then $len(x \bullet wa) = len((x \bullet w)a)$ by def of \bullet = $len(x \bullet w)+1$ by def of len

= len(x)+len(w)+1 **by I.H.**

= len(x)+len(wa) by def of len

Therefore, len(x•wa)= len(x)+len(wa) for all $x \in \Sigma^*$, so P(wa) is true.

So, by induction $len(x \bullet y) = len(x) + len(y)$ for all $x, y \in \Sigma^*$

- **Basis:** Atomic(v) \in **Prop for any** v \in {p, q, r, ...}
- Recursive step:

Neg(A) \in Prop for any A \in Prop Wedge(A,B) \in Prop for any A, B \in Prop Vee(A,B) \in Prop for any A, B \in Prop

Example

 Wedge(Atomic(p), Neg(Atomic(r))) is the parse tree of "p ∧ ¬r"

Functions on Propositions

T takes parse tree to corresponding proposition

- **T**(Atomic(v)) = v
- $T(Wedge(A, B)) = T(A) \land T(B)$
- **T**(Vee(A, B)) = **T**(A) ∨ **T**(B)
- $T(Neg(A)) = \neg T(A)$

Example

T(Wedge(Atomic(p), Neg(Atomic(r))))

- = T(Atomic(p)) ^ T(Neg(Atomic(r)))
- = T(Atomic(p)) ∧ ¬ T(Atomic(r))

= p ^ _ r

flip is defined to mirror De Morgan's law

- flip(Atomic(v)) = Neg(Atomic(v))
- flip(Neg(A)) = A
- flip(Wedge(A, B)) = Vee(flip(A), flip(B))
- flip(Vee(A, B)) = Wedge(flip(A), flip(B))

Example

flip(Wedge(Atomic(p), Neg(Atomic(r))))

- = Vee(flip(Atomic(p)), flip(Neg(Atomic(r))))
- = Vee(**flip**(Atomic(p)), Atomic(r))
- = Vee(Neg(Atomic(p)), Atomic(r))

Let P(A) be "T(Neg(A)) = T(flip(A))".

We will prove P(A) for $A \in Prop$ by structural induction.

Let P(A) be "T(Neg(A)) = T(flip(A))".

We will prove P(A) for $A \in Prop$ by structural induction.

Base Case: Let $v \in \{p, q, r, ...\}$. We want to show P(Atomic(v)).

LHS is T(Neg(Atomic(v)). RHS is T(flip(Atomic(v)) = T(Neg(Atomic(v)) by def of flip. So, the two sides are equal.

Let P(A) be "T(Neg(A)) = T(flip(A))".

We will prove P(A) for $A \in Prop$ by structural induction.

Base Case: Let $v \in \{p, q, r, ...\}$ P(Atomic(v)) holds.

Inductive Hypothesis: Suppose P(A) and P(B) hold for some arbitrary $A, B \in Prop$, i.e., T(Neg(A)) = T(flip(A)) and for B.

Let P(A) be "T(Neg(A)) = T(flip(A))".

We will prove P(A) for $A \in Prop$ by structural induction.

Base Case: Let $v \in \{p, q, r, ...\}$ P(Atomic(v)) holds.

Inductive Hypothesis: Suppose P(A) and P(B) hold for some arbitrary $A, B \in Prop$, i.e., T(Neg(A)) = T(flip(A)) and for B.

Inductive Step: Goal: Prove P(Neg(A)), P(Wedge(A, B)), and ...

Let P(A) be "T(Neg(A)) = T(flip(A))".

We will prove P(A) for $A \in Prop$ by structural induction.

Base Case: Let $v \in \{p, q, r, ...\}$ P(Atomic(v)) holds.

Inductive Hypothesis: Suppose P(A) and P(B) hold for some arbitrary $A, B \in Prop$, i.e., T(Neg(A)) = T(flip(A)) and for B.

Inductive Step: Goal: Prove P(Neg(A)), P(Wedge(A, B)), and ...

```
T(Neg(Neg(A)))

\equiv \neg T(Neg(A))

\equiv \neg \neg T(A)

\equiv T(A)

\equiv T(flip(Neg(A)))
```

Def of **T** Def of **T** Double Negation Def of **flip**

Let P(A) be "T(Neg(A)) = T(flip(A))".

We will prove P(A) for $A \in Prop$ by structural induction.

Base Case: Let $v \in \{p, q, r, ...\}$ P(Atomic(v)) holds.

Inductive Hypothesis: Suppose P(A) and P(B) hold for some arbitrary $A, B \in Prop$, i.e., T(Neg(A)) = T(flip(A)) and for B.

Inductive Step: Goal: Prove P(Neg(A)), P(Wedge(A, B)), and ...

T(Neg(Wedge(A, B)))

- $= \neg T(Wedge(A, B))$
- $= \neg(T(A) \land T(B))$
- $= \neg T(A) \lor \neg T(B)$
- $= T(Neg(A)) \lor T(Neg(B))$
- = T(flip(A)) ∨ T(flip(B))
- = T(Vee(flip(A), flip(B))
- = T(flip(Wedge(A, B))

Def of **T** Def of **T** De Morgan Def of **T IH** Def of **T** Def of **flip**

Let P(A) be "T(Neg(A)) = T(flip(A))".

We will prove P(A) for $A \in Prop$ by structural induction.

Base Case: Let $v \in \{p, q, r, ...\}$ P(Atomic(v)) holds.

Inductive Hypothesis: Suppose P(A) and P(B) hold for some arbitrary $A, B \in Prop$, i.e., T(Neg(A)) = T(flip(A)) and for B.

Inductive Step: Goal: Prove P(Neg(A)), P(Wedge(A, B)), and ...

T(Neg(Vee(A, B)))

- = ¬**T**(Vee(A, B))
- $= \neg(\mathbf{T}(\mathsf{A}) \lor \mathbf{T}(\mathsf{B}))$
- $= \neg T(A) \land \neg T(B)$
- $= T(Neg(A)) \wedge T(Neg(B))$
- $= T(flip(A)) \land T(flip(B))$
- = T(Wedge(flip(A), flip(B))
- = T(flip(Vee(A, B))

Def of **T** Def of **T** De Morgan Def of **T** IH Def of **T** Def of **flip**

Let P(A) be "T(Neg(A)) = T(flip(A))".

We will prove P(A) for $A \in Prop$ by structural induction.

Base Case: Let $v \in \{p, q, r, ...\}$ P(Atomic(v)) holds.

Inductive Hypothesis: Suppose P(A) and P(B) hold for some arbitrary $A, B \in Prop$, i.e., T(Neg(A)) = T(flip(A)) and for B.

Inductive Step: Goal: Prove P(Neg(A)), P(Wedge(A, B)), and ...

... so P(Neg(A)) holds.

... so P(Wedge(A, B)) holds.

... so P(Vee(A, B)) holds.

Thus, we have proven P(A) for all A by structural induction.

Used structural induction to prove a more general version of De Morgan's law. (Allows any number of ANDs and ORs.)

Structural induction is also the right tool to prove that, if we have $x \equiv_m y$, we can substitute y for x everywhere in an arithmetic expression and the result will be congruent.

(This tool, whose most obvious application is proving facts about programs, also lets us prove important math results.)

Linked Lists of Integers

- **Basis:** null ∈ **Lists**
- Recursive step:

If $L \in Lists$ and $v \in \mathbb{Z}$, then Node(v, L) $\in Lists$

[1, 2]

Examples:

- null []
- Node(1, null) [1]
- Node(1, Node(2, null))

Functions on Linked Lists

Set of numbers stored in a list:

- values(null) = Ø
- values(Node(v, L)) = $\{v\} \cup values(L)$

Example:

values(Node(1, Node(2, null))

- = {1} ∪ **values**(Node(2, null)
- $= \{1\} \cup \{2\} \cup values(null)$
- $= \{1\} \cup \{2\} \cup \emptyset = \{1, 2\}$

Def of values Def of values Def of values

Remove the numbers that don't satisfy p(v):

- **filter**_p(null) = null
- filter_p(Node(v, L)) = Node(v, filter_p(L))
- filter_p(Node(v, L)) = filter_p(L)

Example: p(v) := v < 2

filter_p(Node(1, Node(2, null)))

- = Node(1, **filter**_p(Node(2, null)))
- = Node(1, filter_p(null))
- = Node(1, null)

Def filter_p Def filter_p Def filter_p

if p(v)

otherwise

Q(L) := " $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$ for all $x \in \mathbb{Z}$ ". We will prove Q(L) for $L \in Lists$ by structural induction.

Q(L) := " $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$ for all $x \in \mathbb{Z}$ ". We will prove Q(L) for $L \in Lists$ by structural induction.

Base Case: Let $x \in \mathbb{Z}$ be arbitrary.

```
LHS is x \in values(filter_p(null))\equiv x \in values(null)Def of filter_p\equiv x \in \emptysetDef of values\equiv FDef of \emptysetRHS is p(x) \land x \in values(null)\equiv p(x) \land x \in \emptysetDef of values\equiv p(x) \land x \in \emptysetDef of \emptyset\equiv p(x) \land FDef of \emptyset\equiv FDef of \emptyset
```

These are equal as required.

Since x was arbitrary, this shows that Q(null) holds.

Q(L) := " $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$ for all $x \in \mathbb{Z}$ ". We will prove Q(L) for $L \in Lists$ by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$.

Q(L) := " $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$ for all $x \in \mathbb{Z}$ ". We will prove Q(L) for $L \in Lists$ by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$.

Inductive Step: Goal: Prove Q(Node(v, L)) for all $v \in \mathbb{Z}$

Q(L) := " $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$ for all $x \in \mathbb{Z}$ ". We will prove Q(L) for $L \in Lists$ by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$.

Inductive Step: Goal: Prove Q(Node(v, L)) for all $v \in \mathbb{Z}$

Let x, $v \in \mathbb{Z}$ be arbitrary. We go by cases. Suppose $\neg p(v)$.

 $x \in values(filter_p(Node(v, L)))$

 $\equiv x \in values(filter_p(L))$ $\equiv p(x) \land x \in values(L)$

Def **filter**_p IH

Q(L) := " $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$ for all $x \in \mathbb{Z}$ ". We will prove Q(L) for $L \in Lists$ by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$.

Inductive Step: Goal: Prove Q(Node(v, L)) for all $v \in \mathbb{Z}$

Let x, $v \in \mathbb{Z}$ be arbitrary. We go by cases. Suppose $\neg p(v)$.

 $x \in values(filter_p(Node(v, L)))$ $\equiv x \in values(filter_p(L))$ $\equiv p(x) \land x \in values(L)$

If $\neg p(x)$, then this and $p(x) \land x \in values(Node(v, L))$ are equivalent as they are both false. So now suppose p(x)...

Q(L) := " $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$ for all $x \in \mathbb{Z}$ ". We will prove Q(L) for $L \in Lists$ by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$.

Inductive Step: Goal: Prove Q(Node(v, L)) for all $v \in \mathbb{Z}$

Let $x, v \in \mathbb{Z}$ be arbitrary. We go by cases. Suppose $\neg p(v)$.

 $x \in values(filter_p(Node(v, L)))$ $\equiv x \in values(filter_p(L))$ Def $\equiv p(x) \land x \in values(L)$ IH $\equiv p(x) \land (F \lor x \in values(L))$ Iden $\equiv p(x) \land (x \in \{v\} \lor x \in values(L))$?? $\equiv p(x) \land (x \in \{v\} \cup values(L))$ Def $\equiv p(x) \land (x \in values(Node(v, L)))$ Def

Def **filter**_p IH Identity ?? Def U Def **values**

Q(L) := " $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$ for all $x \in \mathbb{Z}$ ". We will prove Q(L) for $L \in Lists$ by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$.

Inductive Step: Goal: Prove Q(Node(v, L)) for all $v \in \mathbb{Z}$

Let $x, v \in \mathbb{Z}$ be arbitrary. We go by cases. Suppose $\neg p(v)$.

$$\begin{aligned} x \in \mathbf{values}(\mathbf{filter}_{p}(\mathsf{Node}(\mathsf{v},\mathsf{L}))) \\ &\equiv x \in \mathbf{values}(\mathbf{filter}_{p}(\mathsf{L})) \\ &\equiv p(x) \land x \in \mathbf{values}(\mathsf{L}) \\ &\equiv p(x) \land (\mathsf{F} \lor x \in \mathbf{values}(\mathsf{L})) \\ &\equiv p(x) \land (\mathsf{F} \lor x \in \mathbf{values}(\mathsf{L})) \\ &\equiv p(x) \land (x \in \{v\} \lor x \in \mathbf{values}(\mathsf{L})) \\ &\equiv p(x) \land (x \in \{v\} \cup \mathbf{values}(\mathsf{L})) \\ &\equiv p(x) \land (x \in \{v\} \cup \mathbf{values}(\mathsf{L})) \\ &\equiv p(x) \land (x \in \mathbf{values}(\mathsf{Node}(\mathsf{v},\mathsf{L}))) \end{aligned}$$

```
Def filter<sub>p</sub>
IH
Identity
x ≠ v as p(x) but ¬p(v)
Def U
Def values
```

Q(L) := " $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$ for all $x \in \mathbb{Z}$ ". We will prove Q(L) for $L \in Lists$ by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$.

Inductive Step: Goal: Prove Q(Node(v, L)) for all $v \in \mathbb{Z}$

Let $x, v \in \mathbb{Z}$ be arbitrary. We go by cases. Suppose $\neg p(v)$.

```
x \in values(filter_p(Node(v, L)))
```

 $\equiv \dots$ = p(x) \land (x \in values(Node(v, L)))

Thus, the claimed bicondition holds.

Since x was arbitrary, we have shown Q(Node(v, L)).

Q(L) := " $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$ for all $x \in \mathbb{Z}$ ". We will prove Q(L) for $L \in Lists$ by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$.

Inductive Step: Goal: Prove Q(Node(v, L)) for all $v \in \mathbb{Z}$

Let $x, v \in \mathbb{Z}$ be arbitrary. We go by cases. Suppose p(v).

$$x \in values(filter_p(Node(v, L)))$$
 $\equiv x \in values(Node(v, filter_p(L)))$ Def filter_p $\equiv x \in \{v\} \cup values(filter_p(L))$ Def values $\equiv x \in \{v\} \lor x \in values(filter_p(L))$ Def U $\equiv x \in \{v\} \lor (p(x) \land x \in values(L))$ IH $\equiv (x \in \{v\} \lor p(x)) \land (x \in \{v\} \lor x \in values(L))$ Distributivity $\equiv (x \in \{v\} \lor p(x)) \land (x \in values(Node(v, L)))$ Def U, values

Q(L) := " $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$ for all $x \in \mathbb{Z}$ ". We will prove Q(L) for $L \in Lists$ by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$.

Inductive Step: Goal: Prove Q(Node(v, L)) for all $v \in \mathbb{Z}$

Let $x, v \in \mathbb{Z}$ be arbitrary. We go by cases. Suppose p(v).

```
x \in values(filter_p(Node(v, L)))
```

≡...

 $\equiv (x \in \{v\} \lor p(x)) \land (x \in values(Node(v, L)))$

If $x \in \{v\}$ is false, then the first part is $F \lor p(x) \equiv p(x)$.

If true, then x = v, and first part and p(x) are both true. Thus, = $p(x) \land (x \in values(Node(v, L)))$

Q(L) := " $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$ for all $x \in \mathbb{Z}$ ". We will prove Q(L) for $L \in Lists$ by structural induction.

Base Case: ... so Q(null) holds.

Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have $x \in values(filter_p(L))$ iff $p(x) \land x \in values(L)$.

Inductive Step: Goal: Prove P(Node(v, L)) for all $v \in \mathbb{Z}$

Let $x, v \in \mathbb{Z}$ be arbitrary. We go by cases. Suppose p(v).

```
x \in values(filter_p(Node(v, L)))
```

≡...

 $\equiv p(x) \land (x \in values(Node(v, L)))$

Thus, the bicondition claimed by Q(Node(v, L)) holds.

In both cases, we have Q(Node(v, L)) since x was arbitrary.

Hence, we have shown Q(L) for all lists by structural induction.