
CSE 311: Foundations of Computing

Lecture 19:  Recursively Defined Sets &                    
Structural Induction



Administrivia

• Midterm in class Friday

• Midterm review video
– see Panopto Recordings tab on Canvas

• Midterm review session
– Thursday at 1:30 in ECE 125
– come with questions

• HW6 released on Saturday ─ start early
– 2 strong induction, 2 structural induction, 2 string problems



Last time: Recursive Definition of Sets

Recursive definition of set S
• Basis Step: 0 ∈	S
• Recursive Step: If x ∈	S, then x + 2 ∈	S
• Exclusion Rule: Every element in S follows from 

the basis step and a finite number of recursive 
steps.

Can already build sets using { x | P(x) } notation
• these are constructive definitions
• translates more naturally into Java etc.



Last Time: Recursive Definitions

• Any recursively defined set can be translated into 
a Java class

• Any recursively defined function can be translated 
into a Java function
– some (but not all) can be written more cleanly as loops

• Recursively defined functions and sets are our 
mathematical models of code and the data it 
operates on



Last time: Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case: Show that 𝑃(𝑢) is true for all specific 
elements 𝑢 of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃 is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤 constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Last time: Structural vs. Ordinary Induction

Ordinary induction is a special case of 
structural induction:

Recursive definition of ℕ
Basis: 0 ∈	ℕ
Recursive step:  If 𝑘 ∈	ℕ, then 𝑘 + 1 ∈	ℕ



Last time: Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case: Show that 𝑃(𝑢) is true for all specific 
elements 𝑢 of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃 is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤 constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Last time: Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

for some arbitrary x,y ∈	S
4. Inductive Step:  Goal:  Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.      
Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).
Hence P(x+y) is true.

5. Therefore by induction 3|x for all x ∈	S.

Basis: 6Î 𝑆; 15 ∈ 𝑆;
Recursive:  if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆



Rooted Binary Trees

• Basis:  •    is a rooted binary tree
• Recursive step: 

If                and                are rooted binary trees,

then                      also is a rooted binary tree.   

T1 T2

T1 T2



Defining Functions on Rooted Binary Trees

• size(•) = 1

• size ( ) = 1 + size(T1) + size(T2)

• height(•) = 0

• height ( )=1 + max{height(T1), height(T2)}

T1 T2

T1 T2



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 

rooted binary trees T1 and T2.
4. Inductive Step:             Goal:  Prove P( ).

By defn, size(             ) =1+size(T1)+size(T2)
≤ 1+2height(T1)+1–1+2height(T2)+1-1                    

by IH for T1 and T2
≤ 2height(T1)+1+2height(T2)+1–1
≤ 2(2max(height(T1),height(T2))+1)–1
≤ 2(2height(      ))–1 ≤ 2height(            )+1 –1

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.
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1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 

rooted binary trees T1 and T2, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2
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Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 

rooted binary trees T1 and T2, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2
4. Inductive Step:             Goal:  Prove P( ).

size(             )

≤ 2height(            )+1 – 1



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 

rooted binary trees T1 and T2, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2
4. Inductive Step:             Goal:  Prove P( ).

By def, size(             ) =1+size(T1)+size(T2)
≤ 1+2height(T1)+1–1+2height(T2)+1-1                    

by IH for T1 and T2
≤ 2height(T1)+1+2height(T2)+1–1
≤ 2(2max(height(T1),height(T2))+1)–1
≤ 2(2height(      )) – 1 ≤ 2height(            )+1 – 1

which is what we wanted to show.
5. So, the P(T) is true for all rooted binary trees by structural induction.



Strings

• An alphabet S is any finite set of characters

• The set S* of strings over the alphabet S
– example: {0,1}* is the set of binary strings

0, 1, 00, 01, 10, 11, 000, 001, … and “”

• S* is defined recursively by
– Basis: εÎ S∗ (ε is the empty string, i.e., “”)
– Recursive: if 𝑤 Î S*, 𝑎 Î S, then 𝑤𝑎 Î S*



Functions on Recursively Defined Sets (on S*)
Length:

len(ε) = 0
len(wa) = len(w) + 1 for w ∈	S*, a ∈	S

Concatenation:
x • ε = x for x ∈ S*

x • wa = (x • w)a for x ∈	S*, a ∈	S

Reversal:
ε R = ε
(wa)R = a • wR for w ∈	S*, a ∈	S

Number of c’s in a string:
#c(ε) = 0
#c(wc) = #c(w) + 1 for w ∈	S*
#c(wa) = #c(w) for w ∈	S*, a ∈	S, a ≠ c



Claim: len(x•y) = len(x) + len(y) for all x,y ∈S*



Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	S* ” .   
We prove P(y) for all y ∈	S* by structural induction.

Claim: len(x•y) = len(x) + len(y) for all x,y ∈S*



Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	S* ” .   
We prove P(y) for all y ∈	S* by structural induction.

Base Case (y = ε): Let x ∈	S* be arbitrary. Then, len(x • ε) = len(x) =
len(x) + len(ε) since len(ε)=0.  Since x was arbitrary, P(ε) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w ∈	S*

Inductive Step: Goal: Show that P(wa) is true for every a ∈	S
Let a ∈	S. Let x ∈	S*. Then len(x•wa) = len((x•w)a) by defn of •

=  len(x•w)+1 by defn of len
= len(x)+len(w)+1  by I.H.
= len(x)+len(wa) by defn of len

Therefore len(x•wa)= len(x)+len(wa) for all x ∈	S*, so P(wa) is true.

So, by induction len(x•y) = len(x) + len(y) for all x,y ∈ S*

Claim: len(x•y) = len(x) + len(y) for all x,y ∈S*



Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	S* ” .   
We prove P(y) for all y ∈	S* by structural induction.

Base Case (y = ε): Let x ∈	S* be arbitrary. Then, len(x • ε) = len(x) =
len(x) + len(ε) since len(ε)=0.  Since x was arbitrary, P(ε) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w ∈	S*, i.e., len(x•w) = len(x) + len(w) for all x

Inductive Step: Goal: Show that P(wa) is true for every a ∈	S
Let a ∈	S. Let x ∈	S*. Then len(x•wa) = len((x•w)a) by defn of •

=  len(x•w)+1 by defn of len
= len(x)+len(w)+1  by I.H.
= len(x)+len(wa) by defn of len

Therefore len(x•wa)= len(x)+len(wa) for all x ∈	S*, so P(wa) is true.

So, by induction len(x•y) = len(x) + len(y) for all x,y ∈ S*

Claim: len(x•y) = len(x) + len(y) for all x,y ∈S*



Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	S* ” .   
We prove P(y) for all y ∈	S* by structural induction.

Base Case (y = ε): Let x ∈	S* be arbitrary. Then, len(x • ε) = len(x) =
len(x) + len(ε) since len(ε)=0.  Since x was arbitrary, P(ε) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w ∈	S*, i.e., len(x•w) = len(x) + len(w) for all x

Inductive Step: Goal: Show that P(wa) is true for every a ∈	S
Let a ∈	S and x ∈	S* be arbitrary. Then,

len(x•wa)

= len(x)+len(wa)

Claim: len(x•y) = len(x) + len(y) for all x,y ∈S*



Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	S* ” .   
We prove P(y) for all y ∈	S* by structural induction.

Base Case (y = ε): Let x ∈	S* be arbitrary. Then, len(x • ε) = len(x) =
len(x) + len(ε) since len(ε)=0.  Since x was arbitrary, P(ε) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w ∈	S*, i.e., len(x•w) = len(x) + len(w) for all x

Inductive Step: Goal: Show that P(wa) is true for every a ∈	S
Let a ∈	S. Let x ∈	S*. Then len(x•wa) = len((x•w)a) by def of •

=  len(x•w)+1 by def of len
= len(x)+len(w)+1  by I.H.
= len(x)+len(wa) by def of len

Therefore, len(x•wa)= len(x)+len(wa) for all x ∈	S*, so P(wa) is true.

So, by induction len(x•y) = len(x) + len(y) for all x,y ∈ S*

Claim: len(x•y) = len(x) + len(y) for all x,y ∈S*



Parse Trees of Propositions

• Basis: Atomic(v) ∈ Prop for any v ∈ {p, q, r, …}

• Recursive step: 
Neg(A) ∈ Prop for any A ∈ Prop
Wedge(A,B) ∈ Prop for any A, B ∈ Prop
Vee(A,B) ∈ Prop for any A, B ∈ Prop

Example
• Wedge(Atomic(p), Neg(Atomic(r)))

is the parse tree of “p Ù ¬r”



Functions on Propositions

T takes parse tree to corresponding proposition
• T(Atomic(v)) = v
• T(Wedge(A, B)) = T(A) Ù T(B)
• T(Vee(A, B)) = T(A) Ú T(B)
• T(Neg(A)) = ¬ T(A)

Example
T(Wedge(Atomic(p), Neg(Atomic(r))))
= T(Atomic(p)) Ù T(Neg(Atomic(r)))
= T(Atomic(p)) Ù ¬ T(Atomic(r))
= p Ù ¬ r



Functions on Propositions

flip is defined to mirror De Morgan’s law
• flip(Atomic(v)) = Neg(Atomic(v))
• flip(Neg(A)) = A
• flip(Wedge(A, B)) = Vee(flip(A), flip(B))
• flip(Vee(A, B)) = Wedge(flip(A), flip(B))

Example
flip(Wedge(Atomic(p), Neg(Atomic(r))))
= Vee(flip(Atomic(p)), flip(Neg(Atomic(r))))
= Vee(flip(Atomic(p)), Atomic(r))
= Vee(Neg(Atomic(p)), Atomic(r))



Claim:  T(Neg(A)) º T(flip(A)) for all A ∈ Prop



Let P(A) be “T(Neg(A)) º T(flip(A))”.
We will prove P(A) for A ∈ Prop by structural induction.

Claim:  T(Neg(A)) º T(flip(A)) for all A ∈ Prop



Let P(A) be “T(Neg(A)) º T(flip(A))”.
We will prove P(A) for A ∈ Prop by structural induction.
Base Case: Let v ∈ {p, q, r, …}. We want to show P(Atomic(v)).

LHS is T(Neg(Atomic(v)).
RHS is T(flip(Atomic(v)) = T(Neg(Atomic(v)) by def of flip.
So, the two sides are equal.

Claim:  T(Neg(A)) º T(flip(A)) for all A ∈ Prop



Let P(A) be “T(Neg(A)) º T(flip(A))”.
We will prove P(A) for A ∈ Prop by structural induction.
Base Case: Let v ∈ {p, q, r, …}. … P(Atomic(v)) holds.
Inductive Hypothesis: Suppose P(A) and P(B) hold for some

arbitrary A, B ∈ Prop, i.e., T(Neg(A)) = T(flip(A)) and for B.

Claim:  T(Neg(A)) º T(flip(A)) for all A ∈ Prop



Let P(A) be “T(Neg(A)) º T(flip(A))”.
We will prove P(A) for A ∈ Prop by structural induction.
Base Case: Let v ∈ {p, q, r, …}. … P(Atomic(v)) holds.
Inductive Hypothesis: Suppose P(A) and P(B) hold for some

arbitrary A, B ∈ Prop, i.e., T(Neg(A)) = T(flip(A)) and for B.
Inductive Step: Goal: Prove P(Neg(A)), P(Wedge(A, B)), and …

Claim:  T(Neg(A)) º T(flip(A)) for all A ∈ Prop



Let P(A) be “T(Neg(A)) º T(flip(A))”.
We will prove P(A) for A ∈ Prop by structural induction.
Base Case: Let v ∈ {p, q, r, …}. … P(Atomic(v)) holds.
Inductive Hypothesis: Suppose P(A) and P(B) hold for some

arbitrary A, B ∈ Prop, i.e., T(Neg(A)) = T(flip(A)) and for B.
Inductive Step: Goal: Prove P(Neg(A)), P(Wedge(A, B)), and …

T(Neg(Neg(A)))
º¬T(Neg(A)) Def of T
º¬ ¬T(A) Def of T
º T(A) Double Negation
º T(flip(Neg(A))) Def of flip

Claim:  T(Neg(A)) º T(flip(A)) for all A ∈ Prop



Let P(A) be “T(Neg(A)) º T(flip(A))”.
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= T(flip(Wedge(A, B)) Def of flip
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Let P(A) be “T(Neg(A)) º T(flip(A))”.
We will prove P(A) for A ∈ Prop by structural induction.
Base Case: Let v ∈ {p, q, r, …}. … P(Atomic(v)) holds.
Inductive Hypothesis: Suppose P(A) and P(B) hold for some

arbitrary A, B ∈ Prop, i.e., T(Neg(A)) = T(flip(A)) and for B.
Inductive Step: Goal: Prove P(Neg(A)), P(Wedge(A, B)), and …

T(Neg(Vee(A, B)))
= ¬T(Vee(A, B)) Def of T
= ¬(T(A) Ú T(B)) Def of T
= ¬T(A) Ù ¬T(B) De Morgan
= T(Neg(A)) Ù T(Neg(B)) Def of T
= T(flip(A)) Ù T(flip(B)) IH
= T(Wedge(flip(A), flip(B)) Def of T
= T(flip(Vee(A, B)) Def of flip

Claim:  T(Neg(A)) º T(flip(A)) for all A ∈ Prop



Let P(A) be “T(Neg(A)) º T(flip(A))”.
We will prove P(A) for A ∈ Prop by structural induction.
Base Case: Let v ∈ {p, q, r, …}. … P(Atomic(v)) holds.
Inductive Hypothesis: Suppose P(A) and P(B) hold for some

arbitrary A, B ∈ Prop, i.e., T(Neg(A)) = T(flip(A)) and for B.
Inductive Step: Goal: Prove P(Neg(A)), P(Wedge(A, B)), and …

… so P(Neg(A)) holds.
… so P(Wedge(A, B)) holds.
… so P(Vee(A, B)) holds.

Thus, we have proven P(A) for all A by structural induction.

Claim:  T(Neg(A)) º T(flip(A)) for all A ∈ Prop



More Theorems

Used structural induction to prove a more general version of 
De Morgan’s law. (Allows any number of ANDs and ORs.)

Structural induction is also the right tool to prove that, if we 
have 𝑥 ≡! 𝑦, we can substitute 𝑦 for 𝑥 everywhere in an 
arithmetic expression and the result will be congruent.

(This tool, whose most obvious application is proving facts 
about programs, also lets us prove important math results.)



Linked Lists of Integers

• Basis: null ∈ Lists
• Recursive step: 

If L ∈ Lists and v ∈ ℤ, then Node(v, L) ∈ Lists

Examples:
– null []
– Node(1, null) [1]
– Node(1, Node(2, null)) [1, 2]



Functions on Linked Lists

Set of numbers stored in a list:
• values(null) = ∅
• values(Node(v, L)) = {v} ∪ values(L)

Example:
values(Node(1, Node(2, null))
= {1} ∪ values(Node(2, null) Def of values
= {1} ∪ {2} ∪ values(null) Def of values
= {1} ∪ {2} ∪ ∅ = {1, 2} Def of values



Functions on Linked Lists

Remove the numbers that don’t satisfy p(v):
• filterp(null) = null
• filterp(Node(v, L)) = Node(v, filterp(L)) if p(v)
• filterp(Node(v, L))= filterp(L) otherwise

Example: p(v) := v < 2
filterp(Node(1, Node(2, null)))
= Node(1, filterp(Node(2, null))) Def filterp
= Node(1, filterp(null)) Def filterp
= Node(1, null) Def filterp



Claim:  x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L)



Claim:  x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L)

Q(L) := “x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L) for all x ∈ ℤ”.
We will prove Q(L) for L ∈ Lists by structural induction.



Claim:  x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L)

Q(L) := “x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L) for all x ∈ ℤ”.
We will prove Q(L) for L ∈ Lists by structural induction.
Base Case: Let x ∈ ℤ be arbitrary.

LHS is x ∈ values(filterp(null))
º x ∈ values(null) Def of filterp
º x ∈ ∅ Def of values
º F Def of ∅

RHS is p(x) Ù x ∈ values(null)
º p(x) Ù x ∈ ∅ Def of values
º p(x) Ù F Def of ∅
º F Domination

These are equal as required.
Since x was arbitrary, this shows that Q(null) holds.



Claim:  x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L)

Q(L) := “x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L) for all x ∈ ℤ”.
We will prove Q(L) for L ∈ Lists by structural induction.
Base Case: … so Q(null) holds.
Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L).



Claim:  x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L)

Q(L) := “x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L) for all x ∈ ℤ”.
We will prove Q(L) for L ∈ Lists by structural induction.
Base Case: … so Q(null) holds.
Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L).
Inductive Step: Goal: Prove Q(Node(v, L)) for all v ∈ ℤ



Claim:  v ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L)

Q(L) := “x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L) for all x ∈ ℤ”.
We will prove Q(L) for L ∈ Lists by structural induction.
Base Case: … so Q(null) holds.
Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L).
Inductive Step: Goal: Prove Q(Node(v, L)) for all v ∈ ℤ

Let x, v ∈ ℤ be arbitrary. We go by cases. Suppose ¬p(v).
x ∈ values(filterp(Node(v, L)))
º x ∈ values(filterp(L)) Def filterp
º p(x) Ù x ∈ values(L) IH



Claim:  v ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L)

Q(L) := “x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L) for all x ∈ ℤ”.
We will prove Q(L) for L ∈ Lists by structural induction.
Base Case: … so Q(null) holds.
Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L).
Inductive Step: Goal: Prove Q(Node(v, L)) for all v ∈ ℤ

Let x, v ∈ ℤ be arbitrary. We go by cases. Suppose ¬p(v).
x ∈ values(filterp(Node(v, L)))
º x ∈ values(filterp(L)) Def filterp
º p(x) Ù x ∈ values(L) IH

If ¬p(x), then this and p(x) Ù x ∈ values(Node(v, L)) are
equivalent as they are both false. So now suppose p(x)…



Claim:  v ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L)

Q(L) := “x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L) for all x ∈ ℤ”.
We will prove Q(L) for L ∈ Lists by structural induction.
Base Case: … so Q(null) holds.
Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L).
Inductive Step: Goal: Prove Q(Node(v, L)) for all v ∈ ℤ

Let x, v ∈ ℤ be arbitrary. We go by cases. Suppose ¬p(v).
x ∈ values(filterp(Node(v, L)))
º x ∈ values(filterp(L)) Def filterp
º p(x) Ù x ∈ values(L) IH
º p(x) Ù (F Ú x ∈ values(L)) Identity
º p(x) Ù (x ∈ {v} Ú x ∈ values(L)) ??
º p(x) Ù (x ∈ {v} ∪ values(L)) Def ∪
º p(x) Ù (x ∈ values(Node(v, L))) Def values



Claim:  v ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L)

Q(L) := “x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L) for all x ∈ ℤ”.
We will prove Q(L) for L ∈ Lists by structural induction.
Base Case: … so Q(null) holds.
Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L).
Inductive Step: Goal: Prove Q(Node(v, L)) for all v ∈ ℤ

Let x, v ∈ ℤ be arbitrary. We go by cases. Suppose ¬p(v).
x ∈ values(filterp(Node(v, L)))
º x ∈ values(filterp(L)) Def filterp
º p(x) Ù x ∈ values(L) IH
º p(x) Ù (F Ú x ∈ values(L)) Identity
º p(x) Ù (x ∈ {v} Ú x ∈ values(L)) x ≠ v as p(x) but ¬p(v)
º p(x) Ù (x ∈ {v} ∪ values(L)) Def ∪
º p(x) Ù (x ∈ values(Node(v, L))) Def values



Claim:  v ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L)

Q(L) := “x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L) for all x ∈ ℤ”.
We will prove Q(L) for L ∈ Lists by structural induction.
Base Case: … so Q(null) holds.
Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L).
Inductive Step: Goal: Prove Q(Node(v, L)) for all v ∈ ℤ

Let x, v ∈ ℤ be arbitrary. We go by cases. Suppose ¬p(v).
x ∈ values(filterp(Node(v, L)))
º …
º p(x) Ù (x ∈ values(Node(v, L)))

Thus, the claimed bicondition holds.
Since x was arbitrary, we have shown Q(Node(v, L)).



Claim:  v ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L)

Q(L) := “x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L) for all x ∈ ℤ”.
We will prove Q(L) for L ∈ Lists by structural induction.
Base Case: … so Q(null) holds.
Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L).
Inductive Step: Goal: Prove Q(Node(v, L)) for all v ∈ ℤ

Let x, v ∈ ℤ be arbitrary. We go by cases. Suppose p(v).
x ∈ values(filterp(Node(v, L)))
º x ∈ values(Node(v, filterp(L))) Def filterp
º x ∈ {v} ∪ values(filterp(L)) Def values
º x ∈ {v} Ú x ∈ values(filterp(L)) Def ∪
º x ∈ {v} Ú (p(x) Ù x ∈ values(L)) IH
º (x ∈ {v} Ú p(x)) Ù (x ∈ {v} Ú x ∈ values(L)) Distributivity
º (x ∈ {v} Ú p(x)) Ù (x ∈ values(Node(v, L))) Def ∪, values



Claim:  v ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L)

Q(L) := “x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L) for all x ∈ ℤ”.
We will prove Q(L) for L ∈ Lists by structural induction.
Base Case: … so Q(null) holds.
Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L).
Inductive Step: Goal: Prove Q(Node(v, L)) for all v ∈ ℤ

Let x, v ∈ ℤ be arbitrary. We go by cases. Suppose p(v).
x ∈ values(filterp(Node(v, L)))
º …
º (x ∈ {v} Ú p(x)) Ù (x ∈ values(Node(v, L)))

If x ∈ {v} is false, then the first part is F Ú p(x) º p(x).
If true, then x = v, and first part and p(x) are both true. Thus,

º p(x) Ù (x ∈ values(Node(v, L)))



Claim:  v ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L)

Q(L) := “x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L) for all x ∈ ℤ”.
We will prove Q(L) for L ∈ Lists by structural induction.
Base Case: … so Q(null) holds.
Inductive Hypothesis: Suppose Q(L) holds for an arbitrary list L,

i.e., we have x ∈ values(filterp(L)) iff p(x) Ù x ∈ values(L).
Inductive Step: Goal: Prove P(Node(v, L)) for all v ∈ ℤ

Let x, v ∈ ℤ be arbitrary. We go by cases. Suppose p(v).
x ∈ values(filterp(Node(v, L)))
º …
º p(x) Ù (x ∈ values(Node(v, L)))

Thus, the bicondition claimed by Q(Node(v, L)) holds.
In both cases, we have Q(Node(v, L)) since x was arbitrary.

Hence, we have shown Q(L) for all lists by structural induction.


