CSE 311: Foundations of Computing

Lecture 18: Recursively Defined Sets & Structural Induction

- Friday in class
- Covers material up to end of ordinary induction
- Closed book, closed notes
 - will provide reference sheets
- No calculators
 - arithmetic is intended to be straightforward
 - (only a small point deduction anyway)

- 5 problems covering:
 - Logic / English translation
 - Circuits / Boolean algebra / normal forms
 - Solving modular equations
 - Induction
 - Set theory
 - (all English proofs)

Review Session Thu at 1:30 in ECE 125

- 10 minutes per problem
 - write quickly
 - focus on the overall structure of the solution

Last time: Recursive definitions of functions

- $0! = 1; (n+1)! = (n+1) \cdot n!$ for all $n \ge 0$.
- F(0) = 0; F(n+1) = F(n) + 1 for all $n \ge 0$.
- G(0) = 1; $G(n+1) = 2 \cdot G(n)$ for all $n \ge 0$.
- H(0) = 1; $H(n + 1) = 2^{H(n)}$ for all $n \ge 0$.

Last time: Recursive definitions of functions

- Recursive functions allow general computation
 - saw examples not expressible with simple expressions
- So far, we have considered only simple data
 inputs and outputs were just integers
- We need general data as well...
 - these will also be described recursively
 - will allow us to describe data of real programs

Recursive Definitions of Sets (Data)

Natural numbersBasis: $0 \in S$ Recursive:If $x \in S$, then $x+1 \in S$

Even numbers

Basis: $0 \in S$ Recursive:If $x \in S$, then $x+2 \in S$

Recursive definition of set S

- Basis Step: $0 \in S$
- Recursive Step: If $x \in S$, then $x + 2 \in S$
- Exclusion Rule: Every element in S follows from the basis step and a finite number of recursive steps.

We need the exclusion rule because otherwise $S=\mathbb{N}$ would satisfy the other two parts. However, we won't always write it down on these slides.

Recursive Definitions of Sets

Natural numbers 0 ∈ S **Basis**: **Recursive:** If $x \in S$, then $x+1 \in S$ **Even numbers** Basis: $0 \in S$ Recursive: If $x \in S$, then $x+2 \in S$ Powers of 3: Basis: $1 \in S$ Recursive: If $x \in S$, then $3x \in S$. **Basis**: $(0, 0) \in S, (1, 1) \in S$ Recursive: If $(n-1, x) \in S$ and $(n, y) \in S$,

then $(n+1, x + y) \in S$.

?

Recursive Definitions of Sets

Natural numbers Basis: $0 \in S$ **Recursive:** If $x \in S$, then $x+1 \in S$ **Even numbers** Basis: $0 \in S$ Recursive: If $x \in S$, then $x+2 \in S$ Powers of 3: Basis: $1 \in S$ Recursive: If $x \in S$, then $3x \in S$. **Basis**: $(0, 0) \in S, (1, 1) \in S$ **Recursive:** If $(n-1, x) \in S$ and $(n, y) \in S$, Fibonacci numbers then $(n+1, x + y) \in S$.

- An alphabet Σ is any finite set of characters
- The set Σ^* of strings over the alphabet Σ
 - example: {0,1}* is the set of binary strings
 0, 1, 00, 01, 10, 11, 000, 001, ... and ""
- Σ^* is defined recursively by
 - Basis: $\varepsilon \in \Sigma^*$ (ε is the empty string, i.e., "")
 - **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Palindromes are strings that are the same when read backwards and forwards

Basis:

 ε is a palindrome any $a \in \Sigma$ is a palindrome

Recursive step:

If p is a palindrome, then apa is a palindrome for every $a \in \Sigma$

Functions on Recursively Defined Sets (on Σ^*)

Length: len(s) = 0	defined by cases
len(wa) = len(w) + 1 for w $\in \Sigma^*$, a $\in \Sigma$	
Concatenation: $x \bullet \varepsilon = x \text{ for } x \in \Sigma^*$ $x \bullet wa = (x \bullet w)a \text{ for } x \in \Sigma^*, a \in \Sigma$	concat(x,y) or x • y defined by cases on the shape of y
Reversal: $\varepsilon^{R} = \varepsilon$ (wa) ^R = a • w ^R for w $\in \Sigma^{*}$, a $\in \Sigma$	reverse(x) or x ^R
Number of c's in a string: $\#_c(\varepsilon) = 0$ $\#_c(wc) = \#_c(w) + 1$ for $w \in \Sigma^*$ $\#_c(wa) = \#_c(w)$ for $w \in \Sigma^*$, $a \in \Sigma$, $a \neq c$	more cases (3 total) separate c vs a ≠ c

All Binary Strings with no 1's before 0's

Basis: $\epsilon \in S$ Recursive: If $x \in S$, then $0 \bullet x \in S$ If $x \in S$, then $x1 \in S$

> Those have no 1s before 0s. But is that every such string?

• **Basis:** • is a rooted binary tree

Rooted Binary Trees

- Basis: is a rooted binary tree
- Recursive step:


```
public static class BinaryTree {
    static BinaryTree LEAF = ...;
    public BinaryTree(
        BinaryTree T1, BinaryTree T2) {
        ...
    }
}
```

Create a binary tree with BinaryTree.LEAF or new BinaryTree(T1, T2)

Recursively-defined Sets translate natural into Java classes

Defining Functions on Rooted Binary Trees

• size(•) = 1

• size
$$\left(\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right) = 1 + size(\mathbf{T}_1) + size(\mathbf{T}_2)$$

• height(•) = 0

Functions on Rooted Binary Trees in Java

• size(•) = 1

```
public int size(BinaryTree T) {
    if (T == BinaryTree.LEAF) {
        return 1;
        } else {
        return 1 + size(T.left()) + size(T.right());
        }
    }
}
```

Last time: Recursive definitions of functions

- Before, we considered only simple data
 - inputs and outputs were just integers
- Proved facts about those functions with induction
 - n! ≤ nⁿ
 - $f_n < 2^n \text{ and } f_n \ge 2^{n/2-1}$
- How do we prove facts about functions that work with more complex (recursively defined) data?
 - we need a more sophisticated form of induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Conclude that $\forall x \in S, P(x)$

Structural Induction vs. Ordinary Induction

Structural induction follows from ordinary induction:

Define Q(n) to be "for all $x \in S$ that can be constructed in at most n recursive steps, P(x) is true."

Ordinary induction is a special case of structural induction:

Recursive definition of $\ensuremath{\mathbb{N}}$

Basis: $0 \in \mathbb{N}$

Recursive step: If $k \in \mathbb{N}$ then $k + 1 \in \mathbb{N}$

- Let *S* be given by...
 - **Basis:** $6 \in S$; $15 \in S$;
 - **Recursive:** if $x, y \in S$ then $x + y \in S$.

1. Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.

1. Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

- **1.** Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3|6 and 3|15 so P(6) and P(15) are true
- **3. Inductive Hypothesis:** Suppose that P(x) and P(y) are true for some arbitrary $x,y \in S$

4. Inductive Step: Goal: Show P(x+y)

- **1.** Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3|6 and 3|15 so P(6) and P(15) are true
- **3. Inductive Hypothesis:** Suppose that P(x) and P(y) are true for some arbitrary $x,y \in S$
- **4. Inductive Step:** Goal: Show P(x+y)

Since P(x) is true, 3 | x and so x=3m for some integer m and since P(y) is true, 3 | y and so y=3n for some integer n. Therefore x+y=3m+3n=3(m+n) and thus 3 | (x+y).

Hence P(x+y) is true.

5. Therefore by induction 3 | x for all $x \in S$.