CSE 311: Foundations of Computing

Lecture 18: Recursively Defined Sets \& Structural Induction

Midterm

- Friday in class
- Covers material up to end of ordinary induction
- Closed book, closed notes
- will provide reference sheets
- No calculators
- arithmetic is intended to be straightforward
- (only a small point deduction anyway)

Midterm

- 5 problems covering:
- Logic / English translation
- Circuits / Boolean algebra / normal forms
- Solving modular equations
- Induction
- Set theory
- (all English proofs)

Review Session
Thu at 1:30 in ECE 125

- 10 minutes per problem
- write quickly
- focus on the overall structure of the solution

Last time: Recursive definitions of functions

- $0!=1 ;(n+1)!=(n+1) \cdot n!$ for all $n \geq 0$.
- $F(0)=0 ; F(n+1)=F(n)+1$ for all $n \geq 0$.
- $G(0)=1 ; G(n+1)=2 \cdot G(n)$ for all $n \geq 0$.
- $H(0)=1 ; H(n+1)=2^{H(n)}$ for all $n \geq 0$.

Last time: Recursive definitions of functions

- Recursive functions allow general computation
- saw examples not expressible with simple expressions
- So far, we have considered only simple data
- inputs and outputs were just integers
- We need general data as well...
- these will also be described recursively
- will allow us to describe data of real programs

Recursive Definitions of Sets (Data)

Natural numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+1 \in S$
Even numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+2 \in S$

Recursive Definition of Sets

Recursive definition of set S

- Basis Step: $0 \in S$
- Recursive Step: If $x \in S$, then $x+2 \in S$
- Exclusion Rule: Every element in S follows from the basis step and a finite number of recursive steps.

We need the exclusion rule because otherwise
$S=\mathbb{N}$ would satisfy the other two parts. However, we won't always write it down on these slides.

Recursive Definitions of Sets

Natural numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+1 \in S$
Even numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+2 \in S$
Powers of 3:
Basis: $1 \in S$
Recursive: If $x \in S$, then $3 x \in S$.
Basis: $\quad(0,0) \in S,(1,1) \in S$
Recursive: If $(n-1, x) \in S$ and $(n, y) \in S$,
then $(n+1, x+y) \in S$.

Recursive Definitions of Sets

Natural numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+1 \in S$
Even numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+2 \in S$

Powers of 3:
Basis: $1 \in S$
Recursive: If $x \in S$, then $3 x \in S$.
Basis: $\quad(0,0) \in S,(1,1) \in S$

Recursive: If $(\mathrm{n}-1, \mathrm{x}) \in \mathrm{S}$ and $(\mathrm{n}, \mathrm{y}) \in \mathrm{S}$, Fibonacci numbers then $(n+1, x+y) \in S$.

Strings

- An alphabet Σ is any finite set of characters
- The set Σ^{*} of strings over the alphabet Σ
- example: $\{0,1\}^{*}$ is the set of binary strings

$$
0,1,00,01,10,11,000,001, \ldots \text { and "." }
$$

- Σ^{*} is defined recursively by
- Basis: $\varepsilon \in \Sigma^{*}$ (ε is the empty string, i.e., "")
- Recursive: if $w \in \Sigma^{*}, a \in \Sigma$, then $w a \in \Sigma^{*}$

Palindromes

Palindromes are strings that are the same when read backwards and forwards

Basis:

ε is a palindrome
any $a \in \Sigma$ is a palindrome

Recursive step:
If p is a palindrome,
then apa is a palindrome for every $a \in \Sigma$

Functions on Recursively Defined Sets (on Σ^{*})

Length:

$$
\operatorname{len}(\varepsilon)=0
$$

defined by cases

$$
\operatorname{len}(w a)=\operatorname{len}(w)+1 \text { for } w \in \Sigma^{*}, a \in \Sigma
$$

Concatenation:

$$
\begin{aligned}
& x \bullet \varepsilon=x \text { for } x \in \Sigma^{*} \\
& x \bullet w a=(x \bullet w) \text { for } x \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Reversal:

$$
\begin{aligned}
& \varepsilon^{R}=\varepsilon \\
& (\mathrm{wa})^{R}=\mathrm{a} \bullet \mathrm{w}^{\mathrm{R}} \text { for } \mathrm{w} \in \Sigma^{*}, \mathrm{a} \in \Sigma
\end{aligned}
$$

Number of c's in a string:

$$
\begin{aligned}
& \#_{c}(\varepsilon)=0 \\
& \#_{c}(w c)=\#_{c}(w)+1 \text { for } w \in \Sigma^{*} \\
& \#_{c}(w a)=\#_{c}(w) \text { for } w \in \Sigma^{*}, a \in \Sigma, a \neq c
\end{aligned}
$$

concat(x, y) or $\mathrm{x} \cdot \mathrm{y}$
defined by cases
on the shape of y
reverse (x) or x^{R}
more cases (3 total)
separate c vs a $\neq \mathrm{c}$

All Binary Strings with no 1's before 0's

Basis:
$\varepsilon \in S$
Recursive:
If $x \in S$, then $0 \cdot x \in S$
If $x \in S$, then $x 1 \in S$

Those have no 1s before 0s. But is that every such string?

Rooted Binary Trees

- Basis:
- is a rooted binary tree

Rooted Binary Trees

- Basis: - is a rooted binary tree
- Recursive step:

Rooted Binary Trees in Java

public static class BinaryTree \{
static BinaryTree LEAF = ...;
public BinaryTree(
BinaryTree T1, BinaryTree T2) \{
\}
$\}$
Create a binary tree with

Defining Functions on Rooted Binary Trees

- $\operatorname{size}(\cdot)=1$
- $\operatorname{size}(\underset{\sim}{2}=1$
- height(\cdot • $=0$

Functions on Rooted Binary Trees in Java

- $\operatorname{size}(\cdot)=1$
- $\operatorname{size}(\sim)=1+\operatorname{size}\left(T_{1}\right)+\operatorname{size}\left(T_{2}\right)$

```
public int size(BinaryTree T) { Recursive Functions translate
    if (T == BinaryTree.LEAF) {
        return 1;
    } else {
        return 1 + size(T.left()) + size(T.right());
    }
}
```


Last time: Recursive definitions of functions

- Before, we considered only simple data
- inputs and outputs were just integers
- Proved facts about those functions with induction
$-n!\leq n^{n}$
$-f_{n}<2^{n}$ and $f_{n} \geq 2^{n / 2-1}$
- How do we prove facts about functions that work with more complex (recursively defined) data?
- we need a more sophisticated form of induction

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that $P(w)$ holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:
Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step. Prove that $P(w)$ holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Structural Induction vs. Ordinary Induction

Structural induction follows from ordinary induction:

Define $Q(n)$ to be "for all $x \in S$ that can be constructed in at most n recursive steps, $P(x)$ is true."

Ordinary induction is a special case of structural induction:

Recursive definition of \mathbb{N}
Basis: $0 \in \mathbb{N}$
Recursive step: If $k \in \mathbb{N}$ then $k+1 \in \mathbb{N}$

Using Structural Induction

- Let S be given by...
- Basis: $6 \in S ; 15 \in S$;
- Recursive: if $x, y \in S$ then $x+y \in S$.

Claim: Every element of S is divisible by 3 .

Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$ then $x+y \in S$

Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$ then $x+y \in S$

Claim: Every element of S is divisible by 3 .

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x, y \in S$
4. Inductive Step: Goal: Show $\mathrm{P}(\mathrm{x}+\mathrm{y})$

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$ then $x+y \in S$

Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x, y \in S$
4. Inductive Step: Goal: Show $P(x+y)$

Since $P(x)$ is true, $3 \mid x$ and so $x=3 m$ for some integer m and since $P(y)$ is true, $3 \mid y$ and so $y=3 n$ for some integer n.
Therefore $x+y=3 m+3 n=3(m+n)$ and thus $3 \mid(x+y)$.
Hence $P(x+y)$ is true.
5. Therefore by induction $3 \mid x$ for all $x \in S$.

Basis: $6 \in S$; $15 \in S$;
Recursive: if $x, y \in S$ then $x+y \in S$

