
CSE 311: Foundations of Computing

Lecture 18: Recursively Defined Sets &
Structural Induction

Midterm

• Friday in class

• Covers material up to end of ordinary induction

• Closed book, closed notes
– will provide reference sheets

• No calculators
– arithmetic is intended to be straightforward
– (only a small point deduction anyway)

Midterm

• 5 problems covering:
– Logic / English translation
– Circuits / Boolean algebra / normal forms
– Solving modular equations
– Induction
– Set theory
– (all English proofs)

• 10 minutes per problem
– write quickly
– focus on the overall structure of the solution

Review Session
Thu at 1:30
in ECE 125

Last time: Recursive definitions of functions

• 0! = 1; (𝑛 + 1)! = (𝑛 + 1) * 𝑛! for all 𝑛 ≥ 0.

• 𝐹(0) = 0; 𝐹(𝑛 + 1) = 𝐹(𝑛) + 1 for all 𝑛 ≥ 0.

• 𝐺(0) = 1; 𝐺(𝑛 + 1) = 2 * 𝐺(𝑛) for all 𝑛 ≥ 0.

• 𝐻(0) = 1; 𝐻(𝑛 + 1) = 2! " for all 𝑛 ≥ 0.

Last time: Recursive definitions of functions

• Recursive functions allow general computation
– saw examples not expressible with simple expressions

• So far, we have considered only simple data
– inputs and outputs were just integers

• We need general data as well...
– these will also be described recursively
– will allow us to describe data of real programs

Recursive Definitions of Sets (Data)

Natural numbers
Basis: 0 ∈	S
Recursive: If x ∈	S, then x+1 ∈	S

Even numbers
Basis: 0 ∈	S
Recursive: If x ∈	S, then x+2 ∈	S

Recursive Definition of Sets

Recursive definition of set S
• Basis Step: 0 ∈	S
• Recursive Step: If x ∈	S, then x + 2 ∈	S
• Exclusion Rule: Every element in S follows from

the basis step and a finite number of recursive
steps.

We need the exclusion rule because otherwise
S=ℕwould satisfy the other two parts. However,
we won’t always write it down on these slides.

Recursive Definitions of Sets

Basis: (0, 0) ∈	S, (1, 1) ∈	S
Recursive: If (n-1, x) ∈	S and (n, y) ∈	S,

then (n+1, x + y) ∈	S.

Powers of 3:
Basis: 1 ∈	S
Recursive: If x ∈	S, then 3x ∈	S.

Natural numbers
Basis: 0 ∈	S
Recursive: If x ∈	S, then x+1 ∈	S

Even numbers
Basis: 0 ∈	S
Recursive: If x ∈	S, then x+2 ∈	S

?

Recursive Definitions of Sets

Powers of 3:
Basis: 1 ∈	S
Recursive: If x ∈	S, then 3x ∈	S.

Natural numbers
Basis: 0 ∈	S
Recursive: If x ∈	S, then x+1 ∈	S

Even numbers
Basis: 0 ∈	S
Recursive: If x ∈	S, then x+2 ∈	S

Fibonacci numbers
Basis: (0, 0) ∈	S, (1, 1) ∈	S
Recursive: If (n-1, x) ∈	S and (n, y) ∈	S,

then (n+1, x + y) ∈	S.

Strings

• An alphabet S is any finite set of characters

• The set S* of strings over the alphabet S
– example: {0,1}* is the set of binary strings

0, 1, 00, 01, 10, 11, 000, 001, … and “”

• S* is defined recursively by
– Basis: εÎ S∗ (ε is the empty string, i.e., “”)
– Recursive: if 𝑤 Î S*, 𝑎 Î S, then 𝑤𝑎 Î S*

Palindromes

Palindromes are strings that are the same when
read backwards and forwards

Basis:
ε is a palindrome
any 𝑎 ∈ S is a palindrome

Recursive step:
If 𝑝 is a palindrome,
then 𝑎𝑝𝑎 is a palindrome for every 𝑎 ∈ S

Functions on Recursively Defined Sets (on S*)
Length:

len(ε) = 0
len(wa) = len(w) + 1 for w ∈	S*, a ∈	S

Concatenation:
x • ε = x for x ∈ S*

x • wa = (x • w)a for x ∈	S*, a ∈	S

Reversal:
ε R = ε
(wa)R = a • wR for w ∈	S*, a ∈	S

Number of c’s in a string:
#c(ε) = 0
#c(wc) = #c(w) + 1 for w ∈	S*
#c(wa) = #c(w) for w ∈	S*, a ∈	S, a ≠ c

defined by cases

concat(x,y) or x • y
defined by cases
on the shape of y

reverse(x) or xR

more cases (3 total)
separate c vs a ≠ c

All Binary Strings with no 1’s before 0’s

Basis:
ε ∈	S

Recursive:
If x ∈	S, then 0 • x ∈	S
If x ∈	S, then x1 ∈	S

Those have no 1s before 0s.
But is that every such string?

Rooted Binary Trees

• Basis: • is a rooted binary tree

Rooted Binary Trees

• Basis: • is a rooted binary tree
• Recursive step:

If and are rooted binary trees,

then also is a rooted binary tree.

T1 T2

T1 T2

Rooted Binary Trees in Java

public static class BinaryTree {
static BinaryTree LEAF = ...;
public BinaryTree(

BinaryTree T1, BinaryTree T2) {
...
}

}

Create a binary tree with
BinaryTree.LEAF or
new BinaryTree(T1, T2)

Recursively-defined Sets
translate natural into Java classes

Defining Functions on Rooted Binary Trees

• size(•) = 1

• size () = 1 + size(T1) + size(T2)

• height(•) = 0

• height ()=1 + max{height(T1), height(T2)}

T1 T2

T1 T2

Functions on Rooted Binary Trees in Java

public int size(BinaryTree T) {
if (T == BinaryTree.LEAF) {
return 1;

} else {
return 1 + size(T.left()) + size(T.right());

}
}

• size(•) = 1

• size () = 1 + size(T1) + size(T2)
T1 T2

Recursive Functions translate
natural into Java functions

Recursive Sets translate
natural into Java classes

Last time: Recursive definitions of functions

• Before, we considered only simple data
– inputs and outputs were just integers

• Proved facts about those functions with induction
– n! ≤ nn

– fn < 2n and fn ≥ 2n/2-1

• How do we prove facts about functions that work
with more complex (recursively defined) data?
– we need a more sophisticated form of induction

Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case: Show that 𝑃(𝑢) is true for all specific
elements 𝑢 of 𝑆 mentioned in the Basis step

Inductive Hypothesis: Assume that 𝑃 is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the
new elements 𝑤 constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	

Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case: Show that 𝑃(𝑢) is true for all specific
elements 𝑢 of 𝑆 mentioned in the Basis step

Inductive Hypothesis: Assume that 𝑃 is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the
new elements 𝑤 constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	

Structural Induction vs. Ordinary Induction

Structural induction follows from ordinary
induction:

Define 𝑄(𝑛) to be “for all 𝑥 ∈ 𝑆 that can be
constructed in at most
𝑛 recursive steps, 𝑃(𝑥) is true.”

Ordinary induction is a special case of
structural induction:

Recursive definition of ℕ
Basis: 0 ∈	ℕ
Recursive step: If 𝑘 ∈	ℕ then 𝑘 + 1 ∈	ℕ

Using Structural Induction

• Let 𝑆 be given by…
– Basis: 6Î 𝑆; 15 ∈ 𝑆;
– Recursive: if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆.

Claim: Every element of 𝑆 is divisible by 3.

Claim: Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x ∈	S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis: Suppose that P(x) and P(y) are true

for some arbitrary x,y ∈	S
4. Inductive Step: Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.
Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).
Hence P(x+y) is true.

5. Therefore by induction 3|x for all x ∈	S.

Basis: 6Î 𝑆; 15 ∈ 𝑆;
Recursive: if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆

Claim: Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x ∈	S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis: Suppose that P(x) and P(y) are true

for some arbitrary x,y ∈	S
4. Inductive Step: Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.
Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).
Hence P(x+y) is true.

5. Therefore by induction 3|x for all x ∈	S.

Basis: 6Î 𝑆; 15 ∈ 𝑆;
Recursive: if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆

Claim: Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x ∈	S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis: Suppose that P(x) and P(y) are true

for some arbitrary x,y ∈	S
4. Inductive Step: Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.
Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).
Hence P(x+y) is true.

5. Therefore by induction 3|x for all x ∈	S.

Basis: 6Î 𝑆; 15 ∈ 𝑆;
Recursive: if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆

Claim: Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x ∈	S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis: Suppose that P(x) and P(y) are true

for some arbitrary x,y ∈	S
4. Inductive Step: Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.
Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).
Hence P(x+y) is true.

5. Therefore by induction 3|x for all x ∈	S.

Basis: 6Î 𝑆; 15 ∈ 𝑆;
Recursive: if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆

