CSE 311: Foundations of Computing

Lecture 18: Recursively Defined Sets &
Structural Induction

WHAT IS IT?




Midterm

* Friday in class

* Covers material up to end of ordinary induction

Closed book, closed notes
— will provide reference sheets

No calculators
— arithmetic is intended to be straightforward
— (only a small point deduction anyway)



Midterm

* 5 problems covering:
— Logic / English translation
— Circuits / Boolean algebra / normal forms
— Solving modular equations
— Induction

— Set theory

Review Sessi
_ (all English proofs) eview Session

Thu at 1:30
in ECE 125

10 minutes per problem
— write quickly
— focus on the overall structure of the solution



Last time: Recursive definitions of functions

Ol=1 (n+D!'=m+1)-n! foralln = 0.

F(0O)=0;, Fn+1)=Fn)+1foralln = 0.

GO0)=1; G(n+1)=2-G(n)foralln> 0.

HO0)=1; Hn+1) =2® foralln > 0.



Last time: Recursive definitions of functions

* Recursive functions allow general computation
— saw examples not expressible with simple expressions

e So far, we have considered only simple data
— Inputs and outputs were just integers

* We need general data as well...
— these will also be described recursively
— will allow us to describe data of real programs



Recursive Definitions of Sets (Data)

Natural numbers
Basis: 0€eS
Recursive: If x €S, thenx+t1 €S

Even humbers
Basis: 0eS
Recursive: If x €S, thenx+2 €S



Recursive Definition of Sets

Recursive definition of set S

 Basis Step: 0 €S
 Recursive Step: If x€ S, thenx+2 €S

e Exclusion Rule: Every element in S follows from
the basis step and a finite number of recursive

steps.

We need the exclusion rule because otherwise
S=N would satisfy the other two parts. However,
we won’t always write it down on these slides.



Recursive Definitions of Sets

Natural numbers
Basis: 0€eS
Recursive: If x €S, thenx+t1 €S

Even humbers
Basis: 0eS
Recursive: If x €S, thenx+2 €S

Powers of 3:
Basis: 1 €S
Recursive: If X € S, then 3x € S.

Basis: (0,00€eS,(4,1)eS
Recursive: If (n-1,x) €S and (n,y) €S,
then (n+1,x +y) €S.



Recursive Definitions of Sets

Natural numbers
Basis: 0€eS
Recursive: If x €S, thenx+t1 €S

Even humbers
Basis: 0eS
Recursive: If x €S, thenx+2 €S

Powers of 3:
Basis: 1 €S
Recursive: If X € S, then 3x € S.

Basis: (0,00€eS,(4,1)eS
Recursive: If (n-1,x) €S and (n,y) €S,
then (n+1,x +y) €S.

Fibonacci numbers



Strings

 An alphabet X is any finite set of characters

* The set X* of strings over the alphabet X

— example: {0,1}* is the set of binary strings
0,1, 00,01, 10, 11,000, 004, ...  and *"

 2* is defined recursively by
— Basis: ¢ € 2™ (¢ is the empty string, i.e., “”)
— Recursive: ifw € 2*,a € 2, then wa € 2*



Palindromes

Palindromes are strings that are the same when
read backwards and forwards

Basis:

e Is a palindrome
any a € 2 is a palindrome

Recursive step:

If p is a palindrome,
then apa is a palindrome for every a € X



Functions on Recursively Defined Sets (on X*)

Length:
len(e) =0
len(wa) =len(w) + 1forw e X, a e X

defined by cases

Concatenation:

ConcatX, orxe
xec=xforxe X" boy) Y

defined by cases

xewa=(xewlaforxeX* aeXx on the shape of y
Reversal:
efR=¢ reverse(x) or x®

(wa)R=aewRforweX*, aeX
Number of c¢’s in a string:

#(g)=0
. more cases (3 total)
#(wc) =#(w)+1forwe X separatecvsa #c

#(wa)=#(w)forwe X", a€X, a%c



All Binary Strings with no 1’s before O’s

Basis:
cES

Recursive:
If x €S, then0Oex€ES
If x €S, thenx1 €S

Those have no 1s before Os.
But is that every such string?



Rooted Binary Trees

* Basis: * |s arooted binary tree



Rooted Binary Trees

* Basis: .
* Recursive step:

Is a rooted binary tree

°
L



Rooted Binary Trees in Java

public static class BinaryTree {
static BinaryTree LEAF = ..
public BinaryTree(

BinaryTree T1, BinaryTree T2) {

*)

¥
¥

. . Recursively-defined Sets
Create d blnary tree Wlth [translate natural into Java classes]
BinaryTree.LEAF or
new BinaryTree(T1l, T2)




Defining Functions on Rooted Binary Trees

size(¢)=1

““ ::F\‘ ) =1+ SiZE(Tl) + Size(TZ)
o o125

L4
SemmEEEd L oLasE 2

height(¢) =0

height ( &4 )=1 + max{height(T,), height(T,)}

. 0
---------- [ 4



Functions on Rooted Binary Trees Iin Java

e size(®)=1

LJ
L4

* Size ( /\ ) =1 + size(T,) + size(T,)
, ST

.
*
.
QI “
y 1%

""" wt tunmnnnd

public int size(BinaryTree T) {
1f (T == BinaryTree.LEAF) {
return 1;
1} else {

return 1 + size(T.left()) + size(T.right());

¥
¥

p
Recursive Functions translate

natural into Java functions

\

r

Recursive Sets translate
natural into Java classes




Last time: Recursive definitions of functions

* Before, we considered only simple data
— Inputs and outputs were just integers

 Proved facts about those functions with induction
—n!'sn”
—f, <2"andf, 2 2v21

« How do we prove facts about functions that work

with more complex (recursively defined) data?
— we need a more sophisticated form of induction



Structural Induction

How to prove V x € S, P(x) is true:

Base Case: Show that P(u) is true for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis
Conclude thatV x € S, P(x)



Basis: * is arooted binary tree

Structural Induction /

t :.. ._“‘ an .:. ““‘

&A1 S5

1 | |

How to prove V x € S, P(x) is true o /N, o aroted sy s

............

Base Case: /S{ow that P(u) is trueffor all specific
elements u of S mentioned in the (Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step@ove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis
Conclude thatV x € S, P(x)



Structural Induction vs. Ordinary Induction

Structural induction follows from ordinary
induction:
Define Q(n) to be “for all x € S that can be

constructed in at most
n recursive steps, P(x) is true.”

Ordinary induction is a special case of
structural induction:

Recursive definition of N
Basis: 0N
Recursive step: If kENthenk +1€N



Using Structural Induction

* Let S be given by...
—Basis: 6 <S5; 15 € §;
— Recursive: if x,y € S thenx +y € S.

Claim: Every element of S is divisible by 3.



Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

Basis: 6 < S5; 15€ §S;
Recursive: if x,y € S thenx+y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

Basis: 6 < S5; 15€ §S;
Recursive: if x,y € S thenx+y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y € S

4. Inductive Step: |Goal: Show P(x+y)

Basis: 6 < S5; 15€ §S;
Recursive: if x,y € S thenx+y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y € S

4. Inductive Step: |Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.
Therefore x+y=3m+3n=3(m+n) and thus 3| (x+y).

Hence P(x+y) is true.
5. Therefore by induction 3|x for all x € S.

Basis: 6 < S5; 15€ §S;
Recursive: if x,y € S thenx+y €S




