Lecture 18: Recursively Defined Sets & Structural Induction
Midterm

- Friday in class

- Covers material up to end of ordinary induction

- Closed book, closed notes
 - will provide reference sheets

- No calculators
 - arithmetic is intended to be straightforward
 - (only a small point deduction anyway)
Midterm

• 5 problems covering:
 – Logic / English translation
 – Circuits / Boolean algebra / normal forms
 – Solving modular equations
 – Induction
 – Set theory
 – (all English proofs)

• 10 minutes per problem
 – write quickly
 – focus on the overall structure of the solution

Review Session
Thu at 1:30
in ECE 125
Last time: Recursive definitions of functions

• $0! = 1$; $(n + 1)! = (n + 1) \cdot n!$ for all $n \geq 0$.

• $F(0) = 0$; $F(n + 1) = F(n) + 1$ for all $n \geq 0$.

• $G(0) = 1$; $G(n + 1) = 2 \cdot G(n)$ for all $n \geq 0$.

• $H(0) = 1$; $H(n + 1) = 2^{H(n)}$ for all $n \geq 0$.
Last time: Recursive definitions of functions

• Recursive functions allow general computation
 – saw examples not expressible with simple expressions

• So far, we have considered only simple data
 – inputs and outputs were just integers

• We need general data as well...
 – these will also be described recursively
 – will allow us to describe data of real programs
Recursive Definitions of Sets (Data)

Natural numbers
- Basis: $0 \in S$
- Recursive: If $x \in S$, then $x+1 \in S$

Even numbers
- Basis: $0 \in S$
- Recursive: If $x \in S$, then $x+2 \in S$
Recursive Definition of Sets

Recursive definition of set S

- **Basis Step:** $0 \in S$
- **Recursive Step:** If $x \in S$, then $x + 2 \in S$
- **Exclusion Rule:** Every element in S follows from the basis step and a finite number of recursive steps.

We need the exclusion rule because otherwise $S=\mathbb{N}$ would satisfy the other two parts. However, we won’t always write it down on these slides.
Recursive Definitions of Sets

Natural numbers
Basis: \(0 \in S \)
Recursive: If \(x \in S \), then \(x+1 \in S \)

Even numbers
Basis: \(0 \in S \)
Recursive: If \(x \in S \), then \(x+2 \in S \)

Powers of 3:
Basis: \(1 \in S \)
Recursive: If \(x \in S \), then \(3x \in S \).

Basis: \((0, 0) \in S, (1, 1) \in S \)
Recursive: If \((n-1, x) \in S \) and \((n, y) \in S \), then \((n+1, x + y) \in S \).
Recursive Definitions of Sets

Natural numbers
Basis: \(0 \in S\)
Recursive: If \(x \in S\), then \(x + 1 \in S\)

Even numbers
Basis: \(0 \in S\)
Recursive: If \(x \in S\), then \(x + 2 \in S\)

Powers of 3:
Basis: \(1 \in S\)
Recursive: If \(x \in S\), then \(3x \in S\).

Basis: \((0, 0) \in S, (1, 1) \in S\)
Recursive: If \((n-1, x) \in S\) and \((n, y) \in S\), then \((n+1, x + y) \in S\).
Strings

• An *alphabet* Σ is any finite set of characters

• The set Σ^* of *strings* over the alphabet Σ

 – example: $\{0,1\}^*$ is the set of *binary strings*

 0, 1, 00, 01, 10, 11, 000, 001, ... and “”

• Σ^* is defined recursively by

 – **Basis**: $\varepsilon \in \Sigma^*$ (\(\varepsilon\) is the empty string, i.e., “”)

 – **Recursive**: if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$
Palindromes

Palindromes are strings that are the same when read backwards and forwards

Basis:

\[\varepsilon \text{ is a palindrome} \]
\[\text{any } a \in \Sigma \text{ is a palindrome} \]

Recursive step:

If \(p \) is a palindrome,
then \(apa \) is a palindrome for every \(a \in \Sigma \)
Functions on Recursively Defined Sets (on Σ^*)

Length:
\[
\text{len}(\varepsilon) = 0
\]
\[
\text{len}(wa) = \text{len}(w) + 1 \text{ for } w \in \Sigma^*, \ a \in \Sigma
\]

Concatenation:
\[
x \cdot \varepsilon = x \text{ for } x \in \Sigma^*
\]
\[
x \cdot wa = (x \cdot w)a \text{ for } x \in \Sigma^*, \ a \in \Sigma
\]

Reversal:
\[
\varepsilon^R = \varepsilon
\]
\[
(wa)^R = a \cdot w^R \text{ for } w \in \Sigma^*, \ a \in \Sigma
\]

Number of c's in a string:
\[
\#_c(\varepsilon) = 0
\]
\[
\#_c(wc) = \#_c(w) + 1 \text{ for } w \in \Sigma^*
\]
\[
\#_c(wa) = \#_c(w) \text{ for } w \in \Sigma^*, \ a \in \Sigma, \ a \neq c
\]
All Binary Strings with no 1’s before 0’s

Basis:
ε ∈ S

Recursive:
If x ∈ S, then 0 • x ∈ S
If x ∈ S, then x1 ∈ S

Those have no 1s before 0s. But is that every such string?
Rooted Binary Trees

• Basis: • is a rooted binary tree
Rooted Binary Trees

- **Basis:**
 - is a rooted binary tree
- **Recursive step:**

 If T_1 and T_2 are rooted binary trees, then $T_1 \cup T_2$ also is a rooted binary tree.

```
  T_1
     /
    /
   /
 T_2
```

then

```
  /
 T_1
```

also is a rooted binary tree.
Rooted Binary Trees in Java

```java
public static class BinaryTree {
    static BinaryTree LEAF = ...;
    public BinaryTree(
        BinaryTree T1, BinaryTree T2) {
        ...
    }
}

Create a binary tree with
    BinaryTree.LEAF or
    new BinaryTree(T1, T2)
```
Defining Functions on Rooted Binary Trees

- \(\text{size}(\bullet) = 1 \)

- \(\text{size}(T_1, T_2) = 1 + \text{size}(T_1) + \text{size}(T_2) \)

- \(\text{height}(\bullet) = 0 \)

- \(\text{height}(T_1, T_2) = 1 + \max\{\text{height}(T_1), \text{height}(T_2)\} \)
Functions on Rooted Binary Trees in Java

• \(\text{size}(\bullet) = 1 \)

• \(\text{size}(T) = 1 + \text{size}(T_1) + \text{size}(T_2) \)

public int size(BinaryTree T) {
 if (T == BinaryTree.LEAF) {
 return 1;
 } else {
 return 1 + size(T.left()) + size(T.right());
 }
}
Last time: Recursive definitions of functions

• Before, we considered only simple data
 – inputs and outputs were just integers

• Proved facts about those functions with induction
 – $n! \leq n^n$
 – $f_n < 2^n$ and $f_n \geq 2^{n/2-1}$

• How do we prove facts about functions that work with more complex (recursively defined) data?
 – we need a more sophisticated form of induction
Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the *Basis step*.

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the *Recursive step*.

Inductive Step: Prove that $P(w)$ holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis.

Conclude that $\forall x \in S, P(x)$
Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the *Basis step*.

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the *Recursive step*.

Inductive Step: Prove that $P(w)$ holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis.

Conclude that $\forall x \in S, P(x)$
Structural Induction vs. Ordinary Induction

Structural induction follows from ordinary induction:
Define $Q(n)$ to be “for all $x \in S$ that can be constructed in at most n recursive steps, $P(x)$ is true.”

Ordinary induction is a special case of structural induction:
Recursive definition of \mathbb{N}
- **Basis:** $0 \in \mathbb{N}$
- **Recursive step:** If $k \in \mathbb{N}$ then $k + 1 \in \mathbb{N}$
Using Structural Induction

• Let S be given by...
 – **Basis:** $6 \in S; \ 15 \in S$;
 – **Recursive:** if $x, y \in S$ then $x + y \in S$.

Claim: Every element of S is divisible by 3.
Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be “$3 \mid x$”. We prove that $P(x)$ is true for all $x \in S$ by structural induction.

Basis: $6 \in S; \ 15 \in S$

Recursive: if $x, y \in S$ then $x + y \in S$
Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be “3|x”. We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3|6$ and $3|15$ so $P(6)$ and $P(15)$ are true

Basis: $6 \in S; \ 15 \in S$;

Recursive: if $x, y \in S$ then $x + y \in S$
Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be “$3 \mid x$”. We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x,y \in S$
4. Inductive Step: Goal: Show $P(x+y)$

Basis: $6 \in S; \ 15 \in S$
Recursive: if $x,y \in S$ then $x + y \in S$
Claim: Every element of \(S \) is divisible by 3.

1. Let \(P(x) \) be “3 | \(x \)”. We prove that \(P(x) \) is true for all \(x \in S \) by structural induction.

2. Base Case: 3 | 6 and 3 | 15 so \(P(6) \) and \(P(15) \) are true

3. Inductive Hypothesis: Suppose that \(P(x) \) and \(P(y) \) are true for some arbitrary \(x,y \in S \)

4. Inductive Step: Goal: Show \(P(x+y) \)

 Since \(P(x) \) is true, 3 | \(x \) and so \(x=3m \) for some integer \(m \)

 and since \(P(y) \) is true, 3 | \(y \) and so \(y=3n \) for some integer \(n \).

 Therefore \(x+y=3m+3n=3(m+n) \) and thus 3 | \((x+y) \).

 Hence \(P(x+y) \) is true.

5. Therefore by induction 3 | \(x \) for all \(x \in S \).

Basis: 6 \(\in \) \(S \); 15 \(\in \) \(S \);

Recursive: if \(x,y \in S \) then \(x+y \in S \)