
CSE 311: Foundations of Computing

Lecture 16:  Induction & Strong Induction



Last Time: New Inference Rule
Domain: Natural Numbers

𝑃 0 ∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛 𝑃(𝑛)



Last Time: Induction Is A Rule of Inference
Domain: Natural Numbers

How do the givens prove P(5)?

First, we have P(0).
Since P(n) → P(n+1) for all n, we have P(0)→ P(1).  

Since P(0) is true and P(0)→ P(1), by Modus Ponens, P(1) is true.
Since P(n) → P(n+1) for all n, we have P(1)→ P(2).

Since P(1) is true and P(1) → P(2), by Modus Ponens, P(2) is true.

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Last Time: Translating to an English Proof

1. Prove P(0)
2. Let k be an arbitrary integer ≥ 0

3.1. Suppose that P(k) is true
3.2.  ...
3.3.  Prove P(k+1) is true

3. P(k) ® P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   Induction: 1, 4

Base Case
Inductive 
Hypothesis

Inductive 
Step

Conclusion

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Last Time: Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
integers 𝑛 ≥ 0 by induction.”

2. “Base Case:” Prove 𝑃(0)
3. “Inductive Hypothesis:

Assume 𝑃(𝑘) is true for some arbitrary integer 𝑘 ≥ 0”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:

Use the goal to figure out what you need. 
Make sure you are using I.H. and point out where you are 
using it.  (Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 0”



Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + … + (n+1) = (n+1)(n+2)/2
1 + 2 + … + n = n(n+1)/2 by IH

Adding n+1 to both sides, we get:
1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)

Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2

Summation Notation
∑!"#$ 𝑖 = 0 + 1 + 2 + 3 + … + 𝑛



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + … + (n+1) = (n+1)(n+2)/2
1 + 2 + … + n = n(n+1)/2 by IH

Adding n+1 to both sides, we get:
1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)

Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2

Summation Notation
∑!"#$ 𝑖 = 0 + 1 + 2 + 3 + … + 𝑛



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2

1 + 2 + … + n  n(n+1)/2 by IH
Adding n+1 to both sides, we get:

1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)
Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2

“some” or “an”
not any!



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + …+ k+ (k+1) = (k+1)(k+2)/2
1 + 2 + … + n = n(n+1)/2 by IH

Adding n+1 to both sides, we get:
1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)

Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2
4. Induction Step:  

1 + 2 + … + k + (k+1) = (1 + 2 + … + k) + (k+1) 
= k(k+1)/2 + (k+1)  by IH
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2

So, we have shown 1 + 2 + … + k + (k+1) = (k+1)(k+2)/2, 
which is exactly P(k+1).

5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



Induction: Changing the start line 

• What if we want to prove that 𝑃(𝑛) is true 
for all integers 𝑛 ≥ 𝑏 for some integer 𝑏?

• Define predicate 𝑄 𝑘 = 𝑃(𝑘 + 𝑏) for all 𝑘.
– Then ∀𝑛 𝑄 𝑛 ≡ ∀𝑛 ≥ 𝑏 𝑃(𝑛)

• Ordinary induction for 𝑄:  
– Prove 𝑄 0 ≡ 𝑃 𝑏
– Prove                                                        

∀𝑘 𝑄 𝑘 ⟶ 𝑄 𝑘 + 1 ≡ ∀𝑘 ≥ 𝑏 𝑃 𝑘 ⟶ 𝑃 𝑘 + 1



Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
integers 𝑛 ≥ 𝒃 by induction.”

2. “Base Case:” Prove 𝑃(𝒃)
3. “Inductive Hypothesis:

Assume 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 𝒃”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:

Use the goal to figure out what you need. 
Make sure you are using I.H. and point out where you are 
using it.  (Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝒃”



Prove 3𝑛 ≥ 𝑛% + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):  32 = 9 ≥ 7 = 4+3 = 22+3 so P(2) is true.
3. Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 2.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
3k+1 = 3(3k)

≥ 3(k2+3) by the IH
= k2+2k2+9
≥ k2+2k+1 = (k+1)2  since k ≥ 1.

Therefore P(k+1) is true.
5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛% + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥ 7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 2.
4. Inductive Step:  

Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
3k+1 = 3(3k)

≥ 3(k2+3) by the IH
= k2+2k2+9
≥ k2+2k+1 = (k+1)2  since k ≥ 1.

Therefore P(k+1) is true.
5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛% + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥ 7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
=k2+2k+4

3k+1 = 3(3k)
≥ 3(k2+3) by the IH
= k2+2k2+9
≥ k2+2k+1 = (k+1)2  since k ≥ 1.

Therefore P(k+1) is true.
5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛% + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥ 7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
4. Inductive Step:  

Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
3k+1 = 3(3k)

≥ 3(k2+3) by the IH
= k2+2k2+9
≥ k2+2k+1 = (k+1)2  since k ≥ 1.

Therefore P(k+1) is true.
5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛% + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥ 7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
4. Inductive Step:  

Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
3k+1 = 3(3k)

≥ 3(k2+3) by the IH
= k2+2k2+9
≥ k2+2k+1 = (k+1)2  since k ≥ 1.

Therefore P(k+1) is true.
5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛% + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥ 7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
4. Inductive Step:  

Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
3k+1 = 3(3k)

≥ 3(k2+3) by the IH
= 3k2+9
= k2+2k2+9
≥ k2+2k+4 = (k+1)2+3 since k ≥ 1.

Therefore P(k+1) is true.
5. Thus P(n) is true for all integers n ≥ 2, by induction.

Prove 3𝑛 ≥ 𝑛% + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥ 7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
4. Inductive Step:  

Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
3k+1 = 3(3k)

≥ 3(k2+3) by the IH
= k2+2k2+9
≥ k2+2k+4 = (k+1)2+3 since k ≥ 1.

Therefore P(k+1) is true.
5. Thus P(n) is true for all integers n ≥ 2, by induction.

Prove 3𝑛 ≥ 𝑛% + 3 for all 𝑛 ≥ 2



Checkerboard Tiling

• Prove that a 2𝑛 ´ 2𝑛 checkerboard with one square 
removed can be tiled with:



Checkerboard Tiling

1. Let P(n) be any 2n´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1 by induction on n.



Checkerboard Tiling

1. Let P(n) be any 2n´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1 by induction on n.

2. Base Case: n=1



Checkerboard Tiling

1. Let P(n) be any 2n´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1 by induction on n.

2. Base Case: n=1
3. Inductive Hypothesis:  Assume P(k) for some  

arbitrary integer k≥1



Checkerboard Tiling

1. Let P(n) be any 2n´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1 by induction on n.

2. Base Case: n=1
3. Inductive Hypothesis:  Assume P(k) for some  

arbitrary integer k≥1
4. Inductive Step: Prove P(k+1)

Apply IH to 
each quadrant 
then fill with 
extra tile.



Exercise: prove  ∑+,-. -
+(+/-)

= .
./-

for all 𝑛 ≥ 1



1. Let P(n) be “∑"#$% ⁄1 𝑗(𝑗 + 1) = ⁄𝑛 (𝑛 + 1)”.  We will show P(n) 
is true for all integers n ≥ 1 by induction.

2. Base Case (n=1): 1/1(2)= 1/2 = 1/(1+1) so P(1) is true.
3. Inductive Hypothesis:  Suppose, for an arbitrary integer k ≥ 1, 

we have ∑"#$& ⁄1 𝑗(𝑗 + 1) = ⁄𝑘 (𝑘 + 1).
4. Inductive Step:  

Goal:  Show P(k+1), i.e. ∑"#$&'$ ⁄1 𝑗(𝑗 + 1) = ⁄(𝑘 + 1) (𝑘 + 2)

∑"#$&'$ $
"("'$) = ∑"#$& $

"("'$)+
$

(&'$)(&'*)

= &
&'$+

$
(&'$)(&'*) =

& &'* '$
(&'$)(&'*) =

(&'$)!

(&'$)(&'*) =
&'$
&'*

Therefore P(k+1) is true.
5. Thus P(n) is true for all integers n ≥ 1, by induction.

Exercise: prove  ∑+,-. -
+(+/-)

= .
./-

for all 𝑛 ≥ 1



Recall: Induction Rule of Inference
Domain: Natural Numbers

How do the givens prove P(5)?

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Recall: Induction Rule of Inference
Domain: Natural Numbers

How do the givens prove P(5)?

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)

We made it harder than we needed to ...
When we proved 𝑃(2) we knew BOTH 𝑃(0) and 𝑃(1)
When we proved 𝑃(3) we knew 𝑃(0) and 𝑃(1) and 𝑃 2
When we proved 𝑃(4) we knew 𝑃(0), 𝑃(1), 𝑃 2 , 𝑃(3)
etc.

That’s the essence of the idea of Strong Induction.



Strong Induction

𝑃 0
∀𝑘 𝑃 0 ∧ 𝑃 1 ∧ 𝑃 2 ∧⋯∧ 𝑃 𝑘 → 𝑃 𝑘 + 1

∴ ∀𝑛 𝑃(𝑛)



Strong Induction

𝑃 0
∀𝑘 𝑃 0 ∧ 𝑃 1 ∧ 𝑃 2 ∧⋯∧ 𝑃 𝑘 → 𝑃 𝑘 + 1

∴ ∀𝑛 𝑃(𝑛)

Strong induction for 𝑃 follows from ordinary induction for 𝑄
where

𝑄 𝑘 = 𝑃 0 ∧ 𝑃 1 ∧ 𝑃 2 ∧⋯∧ 𝑃 𝑘

Note that 𝑄 0 = 𝑃(0) and 𝑄(𝑘 + 1) ≡ 𝑄(𝑘) ∧ 𝑃 𝑘 + 1
and  ∀𝑛 𝑄 𝑛 ≡ ∀𝑛 𝑃(𝑛)



Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
integers 𝑛 ≥ 𝑏 by induction.”

2. “Base Case:” Prove 𝑃(𝑏)
3. “Inductive Hypothesis:

Assume that for some arbitrary integer 𝑘 ≥ 𝑏,
𝑃(𝑘) is true” 

4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
Use the goal to figure out what you need. 
Make sure you are using I.H. and point out where you are 
using it.  (Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”



Strong Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
integers 𝑛 ≥ 𝑏 by strong induction.”

2. “Base Case:” Prove 𝑃(𝑏)
3. “Inductive Hypothesis:

Assume that for some arbitrary integer 𝑘 ≥ 𝑏,
𝑃(𝑗) is true for every integer 𝑗 from 𝑏 to 𝑘”   

4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
Use the goal to figure out what you need. 
Make sure you are using I.H. (that 𝑃(𝑏), … , 𝑃(𝑘) are true)
and point out where you are using it.                           
(Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”



Recall: Fundamental Theorem of Arithmetic

Every integer > 1 has a unique prime 
factorization

48 =  2 • 2 • 2 • 2 • 3
591 = 3 • 197
45,523 = 45,523
321,950 = 2 • 5 • 5 • 47 • 137
1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803

We use strong induction to prove that a factorization into
primes exists, but not that it is unique.



Every integer ≥ 2 is a product of (one or more) primes.



1. Let P(n) be “n is a product of primes”.  We will show that P(n) is true 
for all integers n ≥ 2 by strong induction.

2. Base Case (n=2):    2 is prime, so it is a product of primes. 
Therefore P(2) is true.

3. Inductive :  Suppose that for some arbitrary integer k ≥ 2, 
P(j) is true for every integer j between 2 and k

4. Inductive Step:
Goal:  Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime:  Then by definition k+1 is a product of primes
Case: k+1 is composite: Then k+1=ab for some integers a and b 

where 2 ≤ a, b ≤ k. By our IH, P(a) and P(b) are true so we have
a = p1p2⋯ pm and b = q1q2⋯

for some primes p1,p2,..., pm, q1,q2,..., qn.
Thus, k+1 = ab = p1p2⋯pmq1q2⋯ qn which is a product of primes. 

Since k ≥ 1, one of these cases must happen and so P(k+1) is true: 
5. Thus P(n) is true for all integers n ≥ 2, by induction.

Every integer ≥ 2 is a product of (one or more) primes.



1. Let P(n) be “n is a product of primes”.  We will show that P(n) is true 
for all integers n ≥ 2 by strong induction.

2. Base Case (n=2):    2 is prime, so it is a product of (one) prime. 
Therefore P(2) is true.

3. Inductive :  Suppose that for some arbitrary integer k ≥ 2, 
P(j) is true for every integer j between 2 and k

4. Inductive Step:
Goal:  Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime:  Then by definition k+1 is a product of primes
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Strong Induction is particularly useful when...

...we need to analyze methods that on input 𝑘 make 
a recursive call for an input different from 𝑘 − 1.

e.g.:  Recursive Modular Exponentiation:
– For exponent 𝑘 > 0 it made a recursive call with 

exponent j = 𝑘/2 when 𝑘 was even or j = 𝑘 − 1 when 𝑘
was odd.



Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 0) {
return 1;

} else if ((k % 2) == 0) {
long temp = FastModExp(a,k/2,modulus);
return (temp * temp) % modulus;

} else {
long temp = FastModExp(a,k-1,modulus);
return (a * temp) % modulus;

}
}

𝑎!"mod𝑚 = 𝑎" mod𝑚 !mod𝑚
𝑎!"#$mod𝑚 = (𝑎 mod𝑚) 5 𝑎2𝑗mod𝑚 mod𝑚



Strong Induction is particularly useful when...

...we need to analyze methods that on input 𝑘 make 
a recursive call for an input different from 𝑘 − 1.

e.g.:  Recursive Modular Exponentiation:
– For exponent 𝑘 > 0 it made a recursive call with 

exponent j = 𝑘/2 when 𝑘 was even or j = 𝑘 − 1 when 𝑘
was odd.

We won’t analyze this particular method by strong 
induction, but we could.   
However, we will use strong induction to analyze 
other functions with recursive definitions.


