CSE 311: Foundations of Computing

Lecture 16: Induction \& Strong Induction

"And another thing . . I want you to be more assertive!
I'm tired of everyone calling you Alexander the

Last Time: New Inference Rule

Domain: Natural Numbers

$$
\frac{P(0) \quad \forall k(P(k) \rightarrow P(k+1))}{\therefore \forall n P(n)}
$$

Last Time: Induction Is A Rule of Inference

Domain: Natural Numbers

$$
\begin{gathered}
P(0) \\
\forall k(P(k) \xrightarrow{\because} P(k+1)) \\
\therefore \forall P(n)
\end{gathered}
$$

How do the givens prove $P(5)$?

First, we have $P(0)$.
Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(0) \rightarrow P(1)$.
Since $P(0)$ is true and $P(0) \rightarrow P(1)$, by Modus Ponens, $P(1)$ is true.
Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(1) \rightarrow P(2)$.
Since $P(1)$ is true and $P(1) \rightarrow P(2)$, by Modus Ponens, $P(2)$ is true.

Last Time: Translating to an English Proof

$$
\begin{aligned}
& P(0) \\
& \forall k(P(k) \rightarrow P(k+1)) \\
& \therefore \forall n P(n)
\end{aligned}
$$

Last Time: Inductive Proofs In 5 Easy Steps

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq 0$ by induction."
2. "Base Case:" Prove $P(0)$
3. "Inductive Hypothesis:

Assume $P(k)$ is true for some arbitrary integer $k \geq 0$ "
4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)!!)$
5. "Conclusion: $P(n)$ is true for all integers $n \geq 0$ "

Prove $1+2+3+\ldots+n=n(n+1) / 2$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.

Summation Notation

$$
\sum_{i=0}^{n} i=0+1+2+3+\ldots+n
$$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $0=0(0+1) / 2$. Therefore $P(0)$ is true.

Summation Notation

$$
\sum_{i=0}^{n} i=0+1+2+3+\ldots+n
$$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $0=0(0+1) / 2$. Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. I.e., suppose $1+2+\ldots+k \neq k(k+1) / 2$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case ($n=0$): $0=0(0+1) / 2$. Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. I.e., suppose $1+2+\ldots+k=k(k+1) / 2$
4. Induction Step:

Goal: Show P(k+1), i.e. show $1+2+\ldots+k+(k+1)=(k+1)(k+2) / 2$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $0=0(0+1) / 2$. Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. I.e., suppose $1+2+\ldots+k=k(k+1) / 2$
4. Induction Step:

$$
\begin{aligned}
1+2+\ldots+k+(k+1) & =(1+2+\ldots+k)+(k+1) \\
& =k(k+1) / 2+(k+1) \text { by IH } \\
& =(k+1)(k / 2+1) \\
& =(k+1)(k+2) / 2
\end{aligned}
$$

So, we have shown $1+2+\ldots+k+(k+1)=(k+1)(k+2) / 2$, which is exactly $\mathrm{P}(\mathrm{k}+1)$.
5. Thus $P(n)$ is true for all $n \in \mathbb{N}$, by induction.

Induction: Changing the start line

- What if we want to prove that $P(n)$ is true for all integers $n \geq b$ for some integer b ?
- Define predicate $Q(k)=P(k+b)$ for all k.
- Then $\forall n Q(n) \equiv \forall n \geq b P(n)$
- Ordinary induction for Q :
- Prove $Q(0) \equiv P(b)$
- Prove
$\forall k(Q(k) \rightarrow Q(k+1)) \equiv \forall k \geq b(P(k) \rightarrow P(k+1))$

Inductive Proofs In 5 Easy Steps

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by induction."
2. "Base Case:" Prove $P(b)$
3. "Inductive Hypothesis:

Assume $P(k)$ is true for an arbitrary integer $k \geq b$ "
4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)$!!)
5. "Conclusion: $P(n)$ is true for all integers $n \geq b$ "

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime \prime}$. We will show $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by induction.

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime \prime}$. We will show $P(n)$ is true for all integers $n \geq 2$ by induction.
2. Base Case $(n=2): 3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime \prime}$. We will show $P(n)$ is true for all integers $n \geq 2$ by induction.
2. Base Case ($n=2$): $\quad 3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 2$. l.e., suppose $3^{k} \geq k^{2}+3$.

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime \prime}$. We will show $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by induction.
2. Base Case $(n=2): 3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 2$. I.e., suppose $3^{k} \geq k^{2}+3$.
4. Inductive Step:

Goal: Show $P(k+1)$, i.e. show $3^{k+1} \geq(k+1)^{2}+3$

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime \prime}$. We will show $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by induction.
2. Base Case $(n=2): 3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 2$. I.e., suppose $3^{k} \geq k^{2}+3$.
4. Inductive Step:

Goal: Show $P(k+1)$, i.e. show $3^{k+1} \geq(k+1)^{2}+3=k^{2}+2 k+4$

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime \prime}$. We will show $P(n)$ is true for all integers $n \geq 2$ by induction.
2. Base Case ($n=2$): $3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 2$. I.e., suppose $3^{k} \geq k^{2}+3$.
4. Inductive Step:

Goal: Show $P(k+1)$, i.e. show $3^{k+1} \geq(k+1)^{2}+3=k^{2}+2 k+4$

$$
\begin{aligned}
3^{k+1} & =3\left(3^{k}\right) \\
& \geq 3\left(k^{2}+3\right) \text { by the IH } \\
& =3 k^{2}+9 \\
& =k^{2}+2 k^{2}+9 \\
& \geq k^{2}+2 k+4=(k+1)^{2}+3 \text { since } k \geq 1
\end{aligned}
$$

Therefore $P(k+1)$ is true.

Prove $3^{n} \geq n^{2}+3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^{n} \geq n^{2}+3^{\prime \prime}$. We will show $P(n)$ is true for all integers $n \geq 2$ by induction.
2. Base Case $(n=2): 3^{2}=9 \geq 7=4+3=2^{2}+3$ so $P(2)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 2$. I.e., suppose $3^{k} \geq k^{2}+3$.
4. Inductive Step:

Goal: Show $P(k+1)$, i.e. show $3^{k+1} \geq(k+1)^{2}+3=k^{2}+2 k+4$

$$
\begin{aligned}
3^{k+1} & =3\left(3^{k}\right) \\
& \geq 3\left(k^{2}+3\right) \text { by the IH } \\
& =k^{2}+2 k^{2}+9 \\
& \geq k^{2}+2 k+4=(k+1)^{2}+3 \text { since } k \geq 1 .
\end{aligned}
$$

Therefore $P(k+1)$ is true.
5. Thus $P(n)$ is true for all integers $n \geq 2$, by induction.

Checkerboard Tiling

- Prove that a $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with: \square

Checkerboard Tiling

1. Let $P(n)$ be any $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with \square. We prove $P(n)$ for all $n \geq 1$ by induction on n.

Checkerboard Tiling

1. Let $P(n)$ be any $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with \square. We prove $P(n)$ for all $n \geq 1$ by induction on n.
2. Base Case: $\mathrm{n}=1$ \square
\square
\square
\square

Checkerboard Tiling

1. Let $P(n)$ be any $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with \square. We prove $P(n)$ for all $n \geq 1$ by induction on n.
2. Base Case: $\mathrm{n}=1 \quad \square \square \square$
3. Inductive Hypothesis: Assume $P(k)$ for some arbitrary integer $k \geq 1$

Checkerboard Tiling

1. Let $P(n)$ be any $2^{n} \times 2^{n}$ checkerboard with one square removed can be tiled with \square. We prove $P(n)$ for all $n \geq 1$ by induction on n.
2. Base Case: $n=1$

3. Inductive Hypothesis: Assume $P(k)$ for some arbitrary integer $k \geq 1$
4. Inductive Step: Prove $P(k+1)$

Apply IH to each quadrant then fill with extra tile.

Exercise: prove $\sum_{j=1}^{n} \frac{1}{j(j+1)}=\frac{n}{n+1}$ for all $n \geq 1$

Exercise: prove $\sum_{j=1}^{n} \frac{1}{j(j+1)}=\frac{n}{n+1}$ for all $n \geq 1$

1. Let $\mathrm{P}(\mathrm{n})$ be " $\sum_{j=1}^{n} 1 / j(j+1)=n /(n+1)$ ". We will show $\mathrm{P}(\mathrm{n})$ is true for all integers $\mathrm{n} \geq 1$ by induction.
2. Base Case ($n=1$): $1 / 1(2)=1 / 2=1 /(1+1)$ so $P(1)$ is true.
3. Inductive Hypothesis: Suppose, for an arbitrary integer $k \geq 1$, we have $\sum_{j=1}^{k} 1 / j(j+1)=k /(k+1)$.
4. Inductive Step:

Goal: Show $\mathrm{P}(\mathrm{k}+1)$, i.e. $\sum_{j=1}^{k+1} 1 / j(j+1)=(k+1) /(k+2)$
$\sum_{j=1}^{k+1} \frac{1}{j(j+1)}=\sum_{j=1}^{k} \frac{1}{j(j+1)}+\frac{1}{(k+1)(k+2)}$
$=\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}=\frac{k(k+2)+1}{(k+1)(k+2)}=\frac{(k+1)^{2}}{(k+1)(k+2)}=\frac{k+1}{k+2}$
Therefore $P(k+1)$ is true.
5. Thus $P(n)$ is true for all integers $n \geq 1$, by induction.

Recall: Induction Rule of Inference

Domain: Natural Numbers

$$
\begin{aligned}
& P(0) \\
& \frac{\forall k(P(k) \rightarrow P(k+1))}{\therefore \forall n P(n)}
\end{aligned}
$$

How do the givens prove $P(5)$?

Recall: Induction Rule of Inference

Domain: Natural Numbers

$$
\frac{\stackrel{P(0)}{\forall k(P(k) \xrightarrow{\rightarrow} P(k+1))}}{\therefore \forall n P(n)}
$$

How do the givens prove $P(5)$?

We made it harder than we needed to ... When we proved $P(2)$ we knew BOTH $P(0)$ and $P(1)$ When we proved $P(3)$ we knew $P(0)$ and $P(1)$ and $P(2)$ When we proved $P(4)$ we knew $P(0), P(1), P(2), P(3)$ etc.
That's the essence of the idea of Strong Induction.

Strong Induction

$$
\begin{aligned}
& P(0) \\
& \forall k((P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(k)) \rightarrow P(k+1))
\end{aligned}
$$

$\therefore \forall n P(n)$

Strong Induction

$$
\begin{aligned}
& P(0) \\
& \forall k((P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(k)) \rightarrow P(k+1))
\end{aligned}
$$

$\therefore \forall n P(n)$

Strong induction for P follows from ordinary induction for Q where

$$
Q(k)=P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(k)
$$

Note that $Q(0)=P(0)$ and $Q(k+1) \equiv Q(k) \wedge P(k+1)$
and $\forall n Q(n) \equiv \forall n P(n)$

Inductive Proofs In 5 Easy Steps

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by induction."
2. "Base Case:" Prove $P(b)$
3. "Inductive Hypothesis:

Assume that for some arbitrary integer $k \geq b$,
$P(k)$ is true"
4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)$!!)
5. "Conclusion: $P(n)$ is true for all integers $n \geq b$ "

Strong Inductive Proofs In 5 Easy Steps

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by strong induction."
2. "Base Case:" Prove $P(b)$
3. "Inductive Hypothesis:

Assume that for some arbitrary integer $k \geq b$,
$P(j)$ is true for every integer j from b to $k "$
4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. (that $P(b), \ldots, P(k)$ are true) and point out where you are using it.
(Don't assume $P(k+1)$!!)
5. "Conclusion: $P(n)$ is true for all integers $n \geq b$ "

Recall: Fundamental Theorem of Arithmetic

Every integer > 1 has a unique prime factorization

$$
\begin{aligned}
& 48=2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \\
& 591=3 \cdot 197 \\
& 45,523=45,523 \\
& 321,950=2 \cdot 5 \cdot 5 \cdot 47 \cdot 137 \\
& 1,234,567,890=2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803
\end{aligned}
$$

We use strong induction to prove that a factorization into primes exists, but not that it is unique.

Every integer ≥ 2 is a product of (one or more) primes.

Every integer ≥ 2 is a product of (one or more) primes.

1. Let $\mathrm{P}(\mathrm{n})$ be " n is a product of primes". We will show that $\mathrm{P}(\mathrm{n})$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.

Every integer ≥ 2 is a product of (one or more) primes.

1. Let $\mathrm{P}(\mathrm{n})$ be " n is a product of primes". We will show that $\mathrm{P}(\mathrm{n})$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case ($n=2$): 2 is prime, so it is a product of (one) prime. Therefore $P(2)$ is true.

Every integer ≥ 2 is a product of (one or more) primes.

1. Let $\mathrm{P}(\mathrm{n})$ be " n is a product of primes". We will show that $\mathrm{P}(\mathrm{n})$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case ($n=2$): 2 is prime, so it is a product of (one) prime. Therefore $P(2)$ is true.
3. Inductive Hyp: Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j between 2 and k

Every integer ≥ 2 is a product of (one or more) primes.

1. Let $\mathrm{P}(\mathrm{n})$ be " n is a product of primes". We will show that $\mathrm{P}(\mathrm{n})$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case ($n=2$): 2 is prime, so it is a product of (one) prime. Therefore $P(2)$ is true.
3. Inductive Hyp: Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j between 2 and k
4. Inductive Step:

$$
\text { Goal: Show } P(k+1) \text {; i.e. } k+1 \text { is a product of primes }
$$

Every integer ≥ 2 is a product of (one or more) primes.

1. Let $\mathrm{P}(\mathrm{n})$ be " n is a product of primes". We will show that $\mathrm{P}(\mathrm{n})$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case ($n=2$): 2 is prime, so it is a product of (one) prime. Therefore $P(2)$ is true.
3. Inductive Hyp: Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j between 2 and k
4. Inductive Step:

Goal: Show $\mathrm{P}(\mathrm{k}+1)$; i.e. $\mathrm{k}+1$ is a product of primes
Case: $k+1$ is prime: Then by definition $k+1$ is a product of primes

Every integer ≥ 2 is a product of (one or more) primes.

1. Let $\mathrm{P}(\mathrm{n})$ be " n is a product of primes". We will show that $\mathrm{P}(\mathrm{n})$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case ($n=2$): 2 is prime, so it is a product of (one) prime. Therefore $P(2)$ is true.
3. Inductive Hyp: Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j between 2 and k
4. Inductive Step:

Goal: Show $P(k+1)$; i.e. $k+1$ is a product of primes
Case: $k+1$ is prime: Then by definition $k+1$ is a product of primes Case: $k+1$ is composite: Then $k+1=a b$ for some integers a and b where $2 \leq a, b \leq k$.

Every integer ≥ 2 is a product of (one or more) primes.

1. Let $\mathrm{P}(\mathrm{n})$ be " n is a product of primes". We will show that $\mathrm{P}(\mathrm{n})$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case ($n=2$): 2 is prime, so it is a product of (one) prime. Therefore $P(2)$ is true.
3. Inductive Hyp: Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j between 2 and k
4. Inductive Step:

Goal: Show $P(k+1)$; i.e. $k+1$ is a product of primes
Case: $k+1$ is prime: Then by definition $k+1$ is a product of primes Case: $k+1$ is composite: Then $k+1=a b$ for some integers a and b where $2 \leq a, b \leq k$. By our IH, $P(a)$ and $P(b)$ are true so we have

$$
\begin{aligned}
& a=p_{1} p_{2} \cdots p_{r} \text { and } b=q_{1} q_{2} \cdots q_{s} \\
& \quad \text { for some primes } p_{1}, p_{2}, \cdots, p_{r}, q_{1}, q_{2}, \ldots, q_{s} .
\end{aligned}
$$

Thus, $k+1=a b=p_{1} p_{2} \cdots p_{r} q_{1} q_{2} \cdots q_{s}$ which is a product of primes. Since $k \geq 2$, one of these cases must happen and so $P(k+1)$ is true.

Every integer ≥ 2 is a product of (one or more) primes.

1. Let $\mathrm{P}(\mathrm{n})$ be " n is a product of primes". We will show that $\mathrm{P}(\mathrm{n})$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case ($n=2$): 2 is prime, so it is a product of (one) prime. Therefore $\mathrm{P}(2)$ is true.
3. Inductive Hyp: Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j between 2 and k
4. Inductive Step:

Goal: Show $\mathrm{P}(\mathrm{k}+1)$; i.e. $\mathrm{k}+1$ is a product of primes
Case: $k+1$ is prime: Then by definition $k+1$ is a product of primes Case: $k+1$ is composite: Then $k+1=a b$ for some integers a and b where $2 \leq a, b \leq k$. By our IH, $P(a)$ and $P(b)$ are true so we have

$$
\begin{aligned}
& a=p_{1} p_{2} \cdots p_{r} \text { and } b=q_{1} q_{2} \cdots q_{s} \\
& \quad \text { for some primes } p_{1}, p_{2}, \ldots, p_{r}, q_{1}, q_{2}, \ldots, q_{s} .
\end{aligned}
$$

Thus, $k+1=a b=p_{1} p_{2} \cdots p_{r} q_{1} q_{2} \cdots q_{s}$ which is a product of primes. Since $k \geq 2$, one of these cases must happen and so $P(k+1)$ is true.
5. Thus $\mathrm{P}(\mathrm{n})$ is true for all integers $\mathrm{n} \geq 2$, by strong induction.

Strong Induction is particularly useful when...

...we need to analyze methods that on input k make a recursive call for an input different from $k-1$.
e.g.: Recursive Modular Exponentiation:

- For exponent $k>0$ it made a recursive call with exponent $\mathrm{j}=k / 2$ when k was even or $\mathrm{j}=k-1$ when k was odd.

Fast Exponentiation

```
public static int FastModExp(int a, int k, int modulus) {
    if (k == 0) {
        return 1;
    } else if ((k % 2) == 0) {
        long temp = FastModExp(a,k/2,modulus);
        return (temp * temp) % modulus;
    } else {
        long temp = FastModExp(a,k-1,modulus);
        return (a * temp) % modulus;
    }
}
```

$$
\begin{aligned}
& a^{2 j} \bmod m=\left(a^{j} \bmod m\right)^{2} \bmod m \\
& a^{2 j+1} \bmod m=\left((a \bmod m) \cdot\left(a^{2 j} \bmod m\right)\right) \bmod m
\end{aligned}
$$

Strong Induction is particularly useful when...

...we need to analyze methods that on input k make a recursive call for an input different from $k-1$.
e.g.: Recursive Modular Exponentiation:

- For exponent $k>0$ it made a recursive call with exponent $\mathrm{j}=k / 2$ when k was even or $\mathrm{j}=k-1$ when k was odd.

We won't analyze this particular method by strong induction, but we could.
However, we will use strong induction to analyze other functions with recursive definitions.

