
CSE 311: Foundations of Computing

Lecture 15: Induction



Modular Exponentiation mod 7

X 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

a a1 a2 a3 a4 a5 a6

1 1 1 1 1 1 1

2 2 4 1 2 4 1

3 3 2 6 4 5 1

4 4 2 1 4 2 1

5 5 4 6 2 3 1

6 6 1 6 1 6 1



Exponentiation

• Compute 7836581453

• Compute 7836581453 mod 104729

• Output is small
– need to keep intermediate results small



Repeated Squaring – small and fast

Since 𝑏 mod𝑚 ≡! 𝑏 and 𝑐 mod𝑚 ≡! 𝑐
we have 𝑏𝑐 mod𝑚 = 𝑏 mod𝑚 𝑐 mod𝑚 mod𝑚

So            𝑎2mod𝑚 = 𝑎 mod𝑚 " mod𝑚
and          𝑎4mod𝑚 = 𝑎2mod𝑚 " mod𝑚
and          𝑎8mod𝑚 = 𝑎4mod𝑚 " mod𝑚
and          𝑎16mod𝑚 = 𝑎8mod𝑚 " mod𝑚
and          𝑎32mod𝑚 = 𝑎16mod𝑚 " mod𝑚

Can compute 𝑎𝑘 mod𝑚 for 𝑘 = 2𝑖 in only 𝑖 steps
What if 𝑘 is not a power of 2?



Fast Exponentiation Algorithm 
81453 in binary is 10011111000101101
81453 = 216 + 213 + 212 + 211 + 210 + 29 + 25 + 23 + 22 + 20

The fast exponentiation algorithm computes 
𝑎# mod𝑚 using ≤ 2log 𝑘 multiplications mod𝑚

a81453 = a216 · a213 · a212 · a211 · a210 · a29 · a25 · a23 · a22 · a20

a81453mod m= 
(…(((((a216 mod m ·

a213 mod m ) mod m · 
a212 mod m) mod m · 

a211 mod m) mod m · 
a210 mod m) mod m · 

a29 mod m) mod m · 
a25 mod m) mod m · 

a23 mod m) mod m · 
a22 mod m) mod m · 

a20 mod m)  mod m 

Uses only 16 + 9 = 25 
multiplications



Fast Exponentiation:  𝑎𝑘mod𝑚 for all 𝑘

𝑎!"mod𝑚 = 𝑎" mod𝑚 !mod𝑚

𝑎!"#$mod𝑚 = (𝑎 mod𝑚) ) 𝑎2𝑗mod𝑚 mod𝑚

Another way....



Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 0) {
return 1;

} else if ((k % 2) == 0) {
long temp = FastModExp(a,k/2,modulus);
return (temp * temp) % modulus;

} else {
long temp = FastModExp(a,k-1,modulus);
return (a * temp) % modulus;

}
}

𝑎!"mod𝑚 = 𝑎" mod𝑚 !mod𝑚
𝑎!"#$mod𝑚 = (𝑎 mod𝑚) ) 𝑎2𝑗mod𝑚 mod𝑚



Using Fast Modular Exponentiation

• Your e-commerce web transactions use SSL 
(Secure Socket Layer) based on RSA encryption

• RSA
– Vendor chooses random 512-bit or 1024-bit primes 𝒑, 𝒒

and 512/1024-bit exponent 𝒆.  Computes 𝒎 = 𝒑 ⋅ 𝒒
– Vendor broadcasts (𝒎, 𝒆)
– To send 𝒂 to vendor, you compute 𝑪 = 𝒂𝒆mod𝒎 using 

fast modular exponentiation and send 𝑪 to the vendor.
– Using secret 𝒑, 𝒒 the vendor computes 𝒅 that is the 

multiplicative inverse of 𝒆 mod (𝒑 − 𝟏)(𝒒 − 𝟏).
– Vendor computes 𝑪𝒅mod𝒎 using fast modular 

exponentiation.
– Fact:   𝒂 = 𝑪𝒅mod𝒎 for 𝟎 < 𝒂 < 𝒎 unless 𝒑|𝒂 or 𝒒|𝒂



More Logic
Induction



Mathematical Induction

Method for proving statements about all natural numbers

– A new logical inference rule!
• It only applies over the natural numbers
• The idea is to use the special structure of the naturals 

to prove things more easily

– Particularly useful for reasoning about programs!
for (int i=0; i < n; n++) { … }
• Show P(i) holds after i times through the loop



Prove ∀𝑎, 𝑏,𝑚 > 0 ∀ 𝑘 ∈ ℕ ((𝑎 ≡# 𝑏) → (𝑎$ ≡# 𝑏$))

Let 𝑎, 𝑏,𝑚 > 0 be arbitrary. Let 𝑘 ∈ ℕ be arbitrary.
Suppose that 𝑎 ≡! 𝑏.

We know (𝑎 ≡+ 𝑏) ∧ (𝑎 ≡+ 𝑏) → (𝑎!≡+ 𝑏!) by multiplying 
congruences.  So, applying this repeatedly, we have:

(𝑎 ≡+ 𝑏) ∧ (𝑎 ≡+ 𝑏) → (𝑎! ≡+ 𝑏!)
(𝑎!≡+ 𝑏!) ∧ (𝑎 ≡+ 𝑏) → (𝑎" ≡+ 𝑏" )

…
(𝑎#$% ≡+ 𝑏#$% ) ∧ (𝑎 ≡+ 𝑏) → (𝑎# ≡+ 𝑏#)

The “…”s is a problem!  We don’t have a proof rule that 
allows us to say “do this over and over”.



But there such a property of the natural numbers!

Domain: Natural Numbers

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Induction Is A Rule of Inference
Domain: Natural Numbers

How do the givens prove P(3)?

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Induction Is A Rule of Inference
Domain: Natural Numbers

How do the givens prove P(5)?

First, we have P(0).
Since P(n) → P(n+1) for all n, we have P(0)→ P(1).  

Since P(0) is true and P(0)→ P(1), by Modus Ponens, P(1) is true.
Since P(n) → P(n+1) for all n, we have P(1)→ P(2).

Since P(1) is true and P(1) → P(2), by Modus Ponens, P(2) is true.

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1. P(0)
2. Let k be an arbitrary integer ≥ 0

3.1.  Assume that P(k) is true
3.2.  ...
3.3.  Prove P(k+1) is true

3. P(k) ® P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   Induction: 1, 4

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1. P(0)
2. Let k be an arbitrary integer ≥ 0

3.1.  Assume that P(k) is true
3.2.  ...
3.3.  Prove P(k+1) is true

3. P(k) ® P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   Induction: 1, 4

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1. P(0)
2. Let k be an arbitrary integer ≥ 0

3.1. P(k) Assumption
3.2.  ...
3.3.  P(k+1)

3. P(k) ® P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   Induction: 1, 4

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Translating to an English Proof

1. Prove P(0)
2. Let k be an arbitrary integer ≥ 0

3.1. Suppose that P(k) is true
3.2.  ...
3.3.  Prove P(k+1) is true

3. P(k) ® P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   Induction: 1, 4

Base Case
Inductive 
Hypothesis

Inductive 
Step

Conclusion

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Translating to an English Proof

[…Define P(n)…]
We will show that 𝑃(𝑛) is true for every 𝑛 ∈ ℕ by Induction.
Base Case: […proof of 𝑃(0) here…]
Induction Hypothesis: 

Suppose that 𝑃(𝑘) is true for an arbitrary 𝑘 ∈ ℕ.
Induction Step:

[…proof of 𝑃(𝑘 + 1) here…]
The proof of 𝑃(𝑘 + 1)must invoke the IH somewhere.

So, the claim is true by induction.

Induction English Proof Template



Inductive Proofs In 5 Easy Steps

Proof: 
1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for every 

𝑛 ≥ 0 by Induction.”
2. “Base Case:” Prove 𝑃(0)
3. “Inductive Hypothesis:

Suppose 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 0”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true.

Use the goal to figure out what you need. 
Make sure you are using I.H. and point out where you are 
using it.  (Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: Result follows by induction”



What is 1 + 2 + 4 + … + 2𝑛 ?

• 1 + 2 + 4 + 8 + 16 = 1
• 1 + 2 + 4 + 8 + 16 = 3
• 1 + 2 + 4 + 8 + 16 = 7
• 1 + 2 + 4 + 8 + 16 = 15
• 1 + 2 + 4 + 8 + 16 = 31

It sure looks like this sum is 2./0 − 1
How can we prove it?

We could prove it for 𝑛 = 1, 𝑛 = 2, 𝑛 = 3,… but 
that would literally take forever.
Good that we have induction!



Prove 1 + 2 + 4 + … + 2𝑛 = 2'()– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
1 + 2 + … + 2k = 2k+1 – 1 by IH

Adding 2k+1 to both sides, we get:
1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1

Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2'()– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
1 + 2 + … + 2k = 2k+1 – 1 by IH

Adding 2k+1 to both sides, we get:
1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1

Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2'()– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
Goal:  Show P(k+1I.e.,), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1

1 + 2 + … + 2k = 2k+1 – 1 by IH
Adding 2k+1 to both sides, we get:

1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2'()– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1
1 + 2 + … + 2k = 2k+1 – 1 by IH

Adding 2k+1 to both sides, we get:
1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1

Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2'()– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  

20 + 21 + … + 2k = 2k+1 – 1 by IH
Adding 2k+1 to both sides, we get:

20 + 21 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
So, we have 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2'()– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  

We can calculate
20 + 21 + … + 2k + 2k+1 = (20+21+ … + 2k) + 2k+1

= (2k+1 – 1) + 2k+1 by the IH
= 2(2k+1) – 1
= 2k+2 – 1,

which is exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2'()– 1

Alternative way of writing the inductive step



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  

We can calculate
20 + 21 + … + 2k + 2k+1 = (20+21+ … + 2k) + 2k+1

= (2k+1 – 1) + 2k+1 by the IH
= 2(2k+1) – 1
= 2k+2 – 1,

which is exactly P(k+1).
5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2'()– 1



Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + … + (n+1) = (n+1)(n+2)/2
1 + 2 + … + n = n(n+1)/2 by IH

Adding n+1 to both sides, we get:
1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)

Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + … + (n+1) = (n+1)(n+2)/2
1 + 2 + … + n = n(n+1)/2 by IH

Adding n+1 to both sides, we get:
1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)

Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2

1 + 2 + … + n  n(n+1)/2 by IH
Adding n+1 to both sides, we get:

1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)
Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + …+ k+ (k+1) = (k+1)(k+2)/2
1 + 2 + … + n = n(n+1)/2 by IH

Adding n+1 to both sides, we get:
1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)

Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2
4. Induction Step:  

1 + 2 + … + k + (k+1) = (1 + 2 + … + k) + (k+1) 
= k(k+1)/2 + (k+1)  by IH
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2

So, we have shown 1 + 2 + … + k + (k+1) = (k+1)(k+2)/2, 
which is exactly P(k+1).

5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



Another example of a pattern

• 20 − 1 = 1 − 1 = 0 = 3 ⋅ 0
• 22 − 1 = 4 − 1 = 3 = 3 ⋅ 1
• 24 − 1 = 16 − 1 = 15 = 3 ⋅ 5
• 26 − 1 = 64 − 1 = 63 = 3 ⋅ 21
• 28 − 1 = 256 − 1 = 255 = 3 ⋅ 85
• ⋯



Prove:  3 ∣ (2./−1) for all 𝑛 ≥ 0



1. Let P(n) be “3 | (22n – 1)”.  We will show P(n) is true for all 
natural numbers by induction.

2. Base Case (n=0):    22·0-1=1-1=0=3·0 Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 3 | 22(k+1) - 1
By IH 22k – 1 = 3j for some integer j

So 22(k+1) – 1 = 22k+2 – 1 = 4(22k) – 1 = 4(3j+1) – 1
= 12j+3 = 3(4j+1)

Therefore 3 | 22(k+1) - 1 which is exactly P(k+1).
5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove:  3 ∣ (2./−1) for all 𝑛 ≥ 0
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