CSE 311: Foundations of Computing

Lecture 15: Induction

Modular Exponentiation mod 7

x	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

a	a^{1}	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}
1	1	1	1	1	1	1
2	2	4	1	2	4	1
3	3	2	6	4	5	1
4	4	2	1	4	2	1
5	5	4	6	2	3	1
6	6	1	6	1	6	1

Exponentiation

- Compute 78365^{81453}
- Compute $78365^{81453} \bmod 104729$
- Output is small
- need to keep intermediate results small

Repeated Squaring - small and fast

Since $b \bmod m \equiv_{m} b$ and $c \bmod m \equiv_{m} c$ we have $b c \bmod m=(b \bmod m)(c \bmod m) \bmod m$

$$
\begin{array}{ll}
\text { So } & a^{2} \bmod m=(a \bmod m)^{2} \bmod m \\
\text { and } & a^{4} \bmod m=\left(a^{2} \bmod m\right)^{2} \bmod m \\
\text { and } & a^{8} \bmod m=\left(a^{4} \bmod m\right)^{2} \bmod m \\
\text { and } & a^{16} \bmod m=\left(a^{8} \bmod m\right)^{2} \bmod m \\
\text { and } & a^{32} \bmod m=\left(a^{16} \bmod m\right)^{2} \bmod m
\end{array}
$$

Can compute $a^{k} \bmod m$ for $k=2^{i}$ in only i steps
What if k is not a power of 2?

Fast Exponentiation Algorithm

81453 in binary is 10011111000101101
$81453=2^{16}+2^{13}+2^{12}+2^{11}+2^{10}+2^{9}+2^{5}+2^{3}+2^{2}+2^{0}$
$a^{81453}=a^{2^{16}} \cdot a^{2^{13}} \cdot a^{2^{12}} \cdot a^{2^{11}} \cdot a^{2^{10}} \cdot a^{2^{9}} \cdot a^{2^{5}} \cdot a^{2^{3}} \cdot a^{2^{2}} \cdot a^{2^{0}}$
$\mathrm{a}^{81453} \bmod \mathrm{~m}=$
(...(()($\left(\mathrm{a}^{2^{16}} \mathrm{mod} m\right.$.
$\left.a^{2^{13}} \bmod m\right) \bmod m$.
$\left.\mathrm{a}^{2^{12}} \bmod \mathrm{~m}\right) \bmod \mathrm{m}$.
$\left.a^{2^{11}} \bmod m\right) \bmod m$.
Uses only $16+9=25$
multiplications $\left.a^{2^{10}} \bmod m\right) \bmod m$.
$\left.a^{2}{ }^{9} \bmod m\right) \bmod m$.
$\left.a^{2}{ }^{5} \bmod m\right) \bmod m$.
$\left.a^{2^{3}} \bmod m\right) \bmod m$.
$\left.a^{2^{2}} \bmod m\right) \bmod m \cdot$
$\left.a^{2^{0}} \bmod m\right) \bmod m$
The fast exponentiation algorithm computes
$a^{k} \bmod m$ using $\leq 2 \log k$ multiplications $\bmod m$

Fast Exponentiation: $a^{k} \bmod m$ for all k

Another way....

$$
\begin{aligned}
& a^{2 j} \bmod m=\left(a^{j} \bmod m\right)^{2} \bmod m \\
& a^{2 j+1} \bmod m=\left((a \bmod m) \cdot\left(a^{2 j} \bmod m\right)\right) \bmod m
\end{aligned}
$$

Fast Exponentiation

```
public static int FastModExp(int a, int k, int modulus) {
    if (k == 0) {
        return 1;
    } else if ((k % 2) == 0) {
        long temp = FastModExp(a,k/2,modulus);
        return (temp * temp) % modulus;
    } else {
        long temp = FastModExp(a,k-1,modulus);
        return (a * temp) % modulus;
    }
}
```

$$
\begin{aligned}
& a^{2 j} \bmod m=\left(a^{j} \bmod m\right)^{2} \bmod m \\
& a^{2 j+1} \bmod m=\left((a \bmod m) \cdot\left(a^{2 j} \bmod m\right)\right) \bmod m
\end{aligned}
$$

Using Fast Modular Exponentiation

- Your e-commerce web transactions use SSL (Secure Socket Layer) based on RSA encryption
- RSA
- Vendor chooses random 512-bit or 1024-bit primes p, q and 512/1024-bit exponent e. Computes $m=p \cdot q$
- Vendor broadcasts (m, e)
- To send a to vendor, you compute $C=a^{e}$ mod m using fast modular exponentiation and send C to the vendor.
- Using secret p, q the vendor computes d that is the multiplicative inverse of $e \bmod (p-1)(q-1)$.
- Vendor computes $C^{d} \bmod m$ using fast modular exponentiation.
- Fact: $\quad a=C^{d} \bmod m$ for $0<a<m$ unless $p \mid a$ or $q \mid a$

More Logic Induction

Mathematical Induction

Method for proving statements about all natural numbers

- A new logical inference rule!
- It only applies over the natural numbers
- The idea is to use the special structure of the naturals to prove things more easily
- Particularly useful for reasoning about programs!
for (int i=0; i < n; n++) \{ ... \}
- Show $P(i)$ holds after i times through the loop

Prove $\forall a, b, m>0 \forall k \in \mathbb{N}\left(\left(a \equiv_{m} b\right) \rightarrow\left(a^{k} \equiv_{m} b^{k}\right)\right)$

Let $a, b, m>0$ be arbitrary. Let $k \in \mathbb{N}$ be arbitrary.
Suppose that $a \equiv_{m} b$.
We know $\left(\left(a \equiv_{m} b\right) \wedge\left(a \equiv_{m} b\right)\right) \rightarrow\left(a^{2} \equiv_{m} b^{2}\right)$ by multiplying congruences. So, applying this repeatedly, we have:

$$
\begin{gathered}
\left(\left(a \equiv_{m} b\right) \wedge\left(a \equiv_{m} b\right)\right) \rightarrow\left(a^{2} \equiv_{m} b^{2}\right) \\
\left(\left(a^{2} \equiv_{m} b^{2}\right) \wedge\left(a \equiv_{m} b\right)\right) \rightarrow\left(a^{3} \equiv_{m} b^{3}\right) \\
\ldots \\
\left(\left(a^{k-1} \equiv_{m} b^{k-1}\right) \wedge\left(a \equiv_{m} b\right)\right) \rightarrow\left(a^{k} \equiv_{m} b^{k}\right)
\end{gathered}
$$

The "..."s is a problem! We don't have a proof rule that allows us to say "do this over and over".

But there such a property of the natural numbers!

Domain: Natural Numbers

$$
\begin{gathered}
P(0) \\
\forall k(P(k) \xrightarrow{\rightarrow P(k+1))} \\
\therefore \forall n P(n)
\end{gathered}
$$

Induction Is A Rule of Inference

Domain: Natural Numbers

$$
\begin{gathered}
P(0) \\
\forall k(P(k) \xrightarrow{\rightarrow} P(k+1)) \\
\therefore \forall n P(n)
\end{gathered}
$$

How do the givens prove $P(3)$?

Induction Is A Rule of Inference

Domain: Natural Numbers

$$
\begin{gathered}
P(0) \\
\forall k(P(k) \xrightarrow{\because} P(k+1)) \\
\therefore \forall P(n)
\end{gathered}
$$

How do the givens prove $P(5)$?

First, we have $P(0)$.
Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(0) \rightarrow P(1)$.
Since $P(0)$ is true and $P(0) \rightarrow P(1)$, by Modus Ponens, $P(1)$ is true.
Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(1) \rightarrow P(2)$.
Since $P(1)$ is true and $P(1) \rightarrow P(2)$, by Modus Ponens, $P(2)$ is true.

Using The Induction Rule In A Formal Proof

$$
\begin{gathered}
\begin{array}{c}
P(0) \\
\forall k(P(k) \xrightarrow{\longrightarrow} P(k+1)) \\
\therefore \forall n P(n)
\end{array}, ~=\frac{1}{2}
\end{gathered}
$$

Using The Induction Rule In A Formal Proof

$$
\begin{aligned}
& P(0) \\
& \forall k(P(k) \rightarrow P(k+1)) \\
& \therefore \forall n P(n)
\end{aligned}
$$

1. $\mathrm{P}(0)$
2. $\quad \forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$
3. $\forall \mathrm{nP}(\mathrm{n})$

Induction: 1, 4

Using The Induction Rule In A Formal Proof

$$
\begin{aligned}
& P(0) \\
& \forall k(P(k) \rightarrow P(k+1)) \\
& \therefore \forall n P(n)
\end{aligned}
$$

1. $\mathrm{P}(0)$
2. Let k be an arbitrary integer ≥ 0
3. $P(k) \rightarrow P(k+1)$
4. $\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)) \quad$ Intro $\forall: 2,3$
5. $\forall \mathrm{nP}(\mathrm{n})$

Induction: 1, 4

Using The Induction Rule In A Formal Proof

$$
\begin{aligned}
& P(0) \\
& \forall k(P(k) \rightarrow P(k+1)) \\
& \therefore \forall n P(n)
\end{aligned}
$$

1. $\mathrm{P}(0)$
2. Let k be an arbitrary integer ≥ 0

$$
\begin{aligned}
& \text { 3.1. } \mathrm{P}(\mathrm{k}) \\
& \text { 3.2. ... } \\
& \text { 3.3. } \mathrm{P}(\mathrm{k}+1)
\end{aligned}
$$

Assumption
3. $P(k) \rightarrow P(k+1)$
4. $\quad \forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$
5. $\forall \mathrm{nP}(\mathrm{n})$

Direct Proof Rule
Intro \forall : 2, 3
Induction: 1, 4

Translating to an English Proof

$$
\begin{gathered}
\begin{array}{c}
P(0) \\
\forall k(P(k) \xrightarrow{3} P(k+1))
\end{array} \\
\therefore \forall n P(n)
\end{gathered}
$$

Translating to an English Proof

Conclusion

Induction English Proof Template

[...Define $P(n)$...]
We will show that $P(n)$ is true for every $n \in \mathbb{N}$ by Induction.
Base Case: [...proof of $P(0)$ here...]
Induction Hypothesis:
Suppose that $P(k)$ is true for an arbitrary $k \in \mathbb{N}$.
Induction Step:
[...proof of $P(k+1)$ here...]
The proof of $P(k+1)$ must invoke the IH somewhere.
So, the claim is true by induction.

Inductive Proofs In 5 Easy Steps

Proof:

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for every $n \geq 0$ by Induction."
2. "Base Case:" Prove $P(0)$
3. "Inductive Hypothesis:

Suppose $P(k)$ is true for an arbitrary integer $k \geq 0$ "
4. "Inductive Step:" Prove that $P(k+1)$ is true.

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)$!!)
5. "Conclusion: Result follows by induction"

What is $1+2+4+\ldots+2^{n}$?

- 1
- $1+2$
- $1+2+4$
- $1+2+4+8$
- $1+2+4+8+16$
$=1$
$=3$
$=7$
$=15$
$=31$

It sure looks like this sum is $2^{n+1}-1$
How can we prove it?
We could prove it for $n=1, n=2, n=3, \ldots$ but that would literally take forever.
Good that we have induction!

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1$ ". We will show $P(n)$ is true for all natural numbers by induction.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1^{\prime}$. We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0): \quad 2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1^{\prime}$. We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case ($n=0$): $2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1$.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1^{\prime}$. We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case ($n=0$): $2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1$.
4. Induction Step:

Goal: Show $P(k+1)$, i.e. show $2^{0}+2^{1}+\ldots+2^{k}+2^{k+1}=2^{k+2}-1$

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1^{\prime \prime}$. We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case ($n=0$): $2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1$.
4. Induction Step:

$$
2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1 \text { by IH }
$$

Adding 2^{k+1} to both sides, we get:

$$
2^{0}+2^{1}+\ldots+2^{k}+2^{k+1}=2^{k+1}+2^{k+1}-1
$$

Note that $2^{k+1}+2^{k+1}=2\left(2^{k+1}\right)=2^{k+2}$.
So, we have $2^{0}+2^{1}+\ldots+2^{k}+2^{k+1}=2^{k+2}-1$, which is exactly $\mathrm{P}(\mathrm{k}+1)$.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1^{\prime \prime}$. We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case ($n=0$): $2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1$.
4. Induction Step:

We can calculate

$$
\begin{aligned}
2^{0}+2^{1}+\ldots+2^{\mathrm{k}}+2^{\mathrm{k}+1} & =\left(2^{0}+2^{1}+\ldots+2^{\mathrm{k}}\right)+2^{\mathrm{k}+1} \\
& =\left(2^{\mathrm{k}+1}-1\right)+2^{\mathrm{k}+1} \quad \text { by the IH } \\
& =2\left(2^{k+1}\right)-1 \\
& =2^{k+2}-1,
\end{aligned}
$$

which is exactly $P(k+1)$.

Alternative way of writing the inductive step

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1^{\prime \prime}$. We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case ($n=0$): $2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1$.
4. Induction Step:

We can calculate

$$
\begin{aligned}
2^{0}+2^{1}+\ldots+2^{\mathrm{k}}+2^{\mathrm{k}+1} & =\left(2^{0}+2^{1}+\ldots+2^{\mathrm{k}}\right)+2^{\mathrm{k}+1} \\
& =\left(2^{\mathrm{k}+1}-1\right)+2^{\mathrm{k}+1} \quad \text { by the IH } \\
& =2\left(2^{k+1}\right)-1 \\
& =2^{k+2}-1,
\end{aligned}
$$

which is exactly $\mathrm{P}(\mathrm{k}+1)$.
5. Thus $P(n)$ is true for all $n \in \mathbb{N}$, by induction.

Prove $1+2+3+\ldots+n=n(n+1) / 2$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0): \quad 0=0(0+1) / 2$. Therefore $P(0)$ is true.

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $0=0(0+1) / 2$. Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. I.e., suppose $1+2+\ldots+k=k(k+1) / 2$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $0=0(0+1) / 2$. Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. I.e., suppose $1+2+\ldots+k=k(k+1) / 2$
4. Induction Step:

Goal: Show $P(k+1)$, i.e. show $1+2+\ldots+k+(k+1)=(k+1)(k+2) / 2$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $0=0(0+1) / 2$. Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. I.e., suppose $1+2+\ldots+k=k(k+1) / 2$
4. Induction Step:

$$
\begin{aligned}
1+2+\ldots+k+(k+1) & =(1+2+\ldots+k)+(k+1) \\
& =k(k+1) / 2+(k+1) \text { by IH } \\
& =(k+1)(k / 2+1) \\
& =(k+1)(k+2) / 2
\end{aligned}
$$

So, we have shown $1+2+\ldots+k+(k+1)=(k+1)(k+2) / 2$, which is exactly $\mathrm{P}(\mathrm{k}+1)$.
5. Thus $P(n)$ is true for all $n \in \mathbb{N}$, by induction.

Another example of a pattern

- $2^{0}-1=1-1=0=3 \cdot 0$
- $2^{2}-1=4-1=3=3 \cdot 1$
- $2^{4}-1=16-1=15=3 \cdot 5$
- $2^{6}-1=64-1=63=3 \cdot 21$
- $2^{8}-1=256-1=255=3 \cdot 85$

Prove: 3 | $\left(2^{2 n}-1\right)$ for all $n \geq 0$

Prove: $3 \mid\left(2^{2 n}-1\right)$ for all $n \geq 0$

1. Let $P(n)$ be " $3 \mid\left(2^{2 n}-1\right)$ ". We will show $P(n)$ is true for all natural numbers by induction.

Prove: $3 \mid\left(2^{2 n}-1\right)$ for all $n \geq 0$

1. Let $P(n)$ be " $3 \mid\left(2^{2 n}-1\right)$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0): \quad 2^{2 \cdot 0}-1=1-1=0=3 \cdot 0$ Therefore $P(0)$ is true

Prove: $3 \mid\left(2^{2 n}-1\right)$ for all $n \geq 0$

1. Let $P(n)$ be " $3 \mid\left(2^{2 n}-1\right)$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $\quad 2^{2 \cdot 0}-1=1-1=0=3 \cdot 0$ Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $\mathrm{P}(\mathrm{k})$ is true for some arbitrary integer $k \geq 0$. l.e., suppose that $3 \mid\left(2^{2 k}-1\right)$

Prove: $3 \mid\left(2^{2 n}-1\right)$ for all $n \geq 0$

1. Let $P(n)$ be " $3 \mid\left(2^{2 n}-1\right)$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $2^{2 \cdot 0}-1=1-1=0=3 \cdot 0$ Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. l.e., suppose that $3 \mid\left(2^{2 k}-1\right)$
4. Induction Step:

Goal: Show P(k+1), i.e. show $3 \mid\left(2^{2(k+1)}-1\right)$

Prove: $3 \mid\left(2^{2 n}-1\right)$ for all $n \geq 0$

1. Let $P(n)$ be " $3 \mid\left(2^{2 n}-1\right)$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $2^{2 \cdot 0}-1=1-1=0=3 \cdot 0$ Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. l.e., suppose that $3 \mid\left(2^{2 k}-1\right)$
4. Induction Step:

By IH, $3 \mid\left(2^{2 k}-1\right)$ so $2^{2 k}-1=3 j$ for some integer j
So $2^{2(k+1)}-1=2^{2 k+2}-1=4\left(2^{2 k}\right)-1=4(3 j+1)-1$
$=12 j+3=3(4 j+1)$
Therefore $3 \mid\left(2^{2(k+1)}-1\right)$ which is exactly $P(k+1)$.
5. Thus $P(n)$ is true for all $n \in \mathbb{N}$, by induction.

