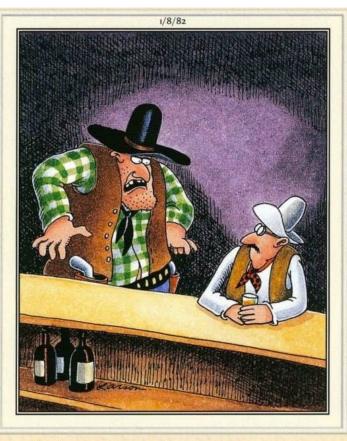
CSE 311: Foundations of Computing

Lecture 14: Modular Inverse, Exponentiation



"I asked you a question, buddy. ... What's the square root of 5,248?" If *a* and *b* are positive integers, then gcd(*a*, *b*) = gcd(*b*, *a* mod *b*)

If a is a positive integer, gcd(a, 0) = a.

```
gcd(a, b) = gcd(b, a \mod b) gcd(a, 0) = a
```

```
int gcd(int a, int b){ /* Assumes: a >= b, b >= 0 */
    if (b == 0) {
        return a;
    } else {
        return gcd(b, a % b);
    }
}
```

Note: gcd(b, a) = gcd(a, b)

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

gcd(660,126) =

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

$$gcd(660,126) = gcd(126, 660 \mod 126) = gcd(126, 30)$$

= $gcd(30, 126 \mod 30) = gcd(30, 6)$
= $gcd(6, 30 \mod 6) = gcd(6, 0)$
= 6

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

Equations with recursive calls:

 $gcd(660,126) = gcd(126, 660 \mod 126) = gcd(126, 30)$ = $gcd(30, 126 \mod 30) = gcd(30, 6)$ = $gcd(6, 30 \mod 6) = gcd(6, 0)$ = 6

Tableau form:

660 = 5 * 126 + 30 126 = 4 * 30 + 630 = 5 * 6 + 0

Famous Algorithmic Problems

- Primality Testing
 - Given an integer n, determine if n is prime
- Factoring
 - Given an integer n, find an integer d(with 1 < d < n) that divides n
- Greatest Common Divisor
 - Given integers a and b, find the largest integer d that divides them both

If *a* and *b* are positive integers, then there exist integers *s* and *t* such that gcd(a,b) = sa + tb.

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a, b) = sa + tb

Step 1 (Compute GCD & Keep Tableau Information):

abamodbrbr $gcd(35, 27) = gcd(27, 35 \mod 27) = gcd(27, 8)$ gcd(27, 8)a = q * b + r35 = 1 * 27 + 8

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 1 (Compute GCD & Keep Tableau Information):

a b b a mod b = r b r $gcd(35, 27) = gcd(27, 35 \mod 27) = gcd(27, 8)$ $= gcd(8, 27 \mod 8) = gcd(8, 3)$ $= gcd(3, 8 \mod 3) = gcd(3, 2)$ $= gcd(2, 3 \mod 2) = gcd(2, 1)$ $= gcd(1, 2 \mod 1) = gcd(1, 0)$ a = q * b + r 35 = 1 * 27 + 8 27 = 3 * 8 + 3 8 = 2 * 3 + 23 = 1 * 2 + 1

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 2 (Solve the equations for r):

$$r = a - q * b$$

8 = 35 - 1 * 27

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 2 (Solve the equations for r):

a = q * b + r

$$35 = 1 * 27 + 8$$

 $27 = 3 * 8 + 3$
 $8 = 2 * 3 + 2$
 $3 = 1 * 2 + 1$

$$r = a - q * b$$

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$1 = 3 - 1 * 2$$

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a, b) = sa + tb

Step 3 (Backward Substitute Equations):

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$(1) = 3 - 1 * 2$$

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a, b) = sa + tb

Step 3 (Backward Substitute Equations):

Plug in the def of 2

$$8 = 35 - 1 * 27$$

$$1 = 3 - 1 * (8 - 2 * 3)$$

$$= 3 - 8 + 2 * 3$$

$$= (-1) * 8 + 3 * 3$$

$$3's \text{ and } 8's$$

$$1 = 3 - 1 * 2$$

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a, b) = sa + tb

Step 3 (Backward Substitute Equations):

Plug in the def of 2

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a, b) = sa + tb

Step 3 (Backward Substitute Equations):

Plug in the def of 2

Multiplicative inverse mod *m*

Let $0 \le a, b < m$. Then, b is the multiplicative inverse of a (modulo m) iff $ab \equiv_m 1$.

х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

x	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

mod 7

mod 10

Suppose gcd(a, m) = 1

By Bézout's Theorem, there exist integers s and tsuch that sa + tm = 1.

s is the multiplicative inverse of a (modulo m):

 $1 = sa + tm \equiv_m sa$

So... we can compute multiplicative inverses with the extended Euclidean algorithm

These inverses let us solve modular equations...

Example

Solve: $7x \equiv_{26} 1$

gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26 = 3 * 7 + 57 = 1 * 5 + 2 5 = 2 * 2 + 1

gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

$$26 = 3 * 7 + 5$$
 $5 = 26 - 3 * 7$ $7 = 1 * 5 + 2$ $2 = 7 - 1 * 5$ $5 = 2 * 2 + 1$ $1 = 5 - 2 * 2$

gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26 = 3 * 7 + 5	5 = 26 - 3 * 7
7 = 1 * 5 + 2	2 = 7 - 1 * 5
5 = 2 * 2 + 1	1 = 5 - 2 * 2

1 = 5 - 2*(7-1*5)= (-2)*7 + 3*5 = (-2)*7 + 3*(26-3*7) = (-11)*7 + 3*26

gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26 = 3 * 7 + 5	5 = 26 - 3 * 7
7 = 1 * 5 + 2	2 = 7 - 1 * 5
5 = 2 * 2 + 1	1 = 5 - 2 * 2

1 = 5 - 2*(7-1*5)= (-2)*7 + 3*5 = (-2)*7 + 3*(26-3*7) = (-11)*7 + 3*26 Now (-11) mod 26 = 15. So, x = 15 + 26k for $k \in \mathbb{Z}$. Now solve: $7y \equiv_{26} 3$

We already computed that 15 is the multiplicative inverse of 7 modulo 26. That is, $7 \cdot 15 \equiv_{26} 1$

If y is a solution, then multiplying by 15 we have $15 \cdot 7 \cdot y \equiv_{26} 15 \cdot 3$

Substituting $15 \cdot 7 \equiv_{26} 1$ into this on the left gives $y = 1 \cdot y \equiv_{26} 15 \cdot 3 \equiv_{26} 19$

This shows that <u>every</u> solution y is congruent to 19.

Now solve: $7y \equiv_{26} 3$

Multiplying both sides of $y \equiv_{26} 19$ by 7 gives $7y \equiv_{26} 7 \cdot 19 \equiv_{26} 3$

So, any $y \equiv_{26} 19$ is a solution.

Thus, the set of numbers of the form y = 19 + 26k, for any k, are <u>exactly</u> solutions of this equation.

gcd(a, m) = 1 if *m* is prime and 0 < a < m so can always solve these equations mod a prime.

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Adding to both sides is an equivalence:

$$x \equiv_{m} y$$

$$x + c \equiv_{m} y + c$$

The same is not true of multiplication...

unless we have a multiplicative inverse $cd \equiv_m 1$

$$\times d \bigwedge^{x} x \equiv_{m} y \xrightarrow{\times c} cx \equiv_{m} cy$$