CSE 311: Foundations of Computing

Lecture 13: Primes, GCD

Last Time: Modular Arithmetic

$$(a + b) \mod 7$$

$$(a \times b) \mod 7$$

Replace number line with a clock. Taking *m* steps returns to the same place.

Makes the answers small since $0 \le r < m$ Unclear (so far) that modular arithmetic has the same properties as ordinary arithmetic....

Last Time: Modular Arithmetic

<u>Idea</u>: Find replacement for "=" that works for modular arithmetic

"=" on ordinary numbers allows us to solve problems, e.g.

- add / subtract numbers from both sides of equations
- substitute "=" values in equations

Definition: "a is congruent to b modulo m"

For
$$a, b, m \in \mathbb{Z}$$
 with $m > 0$
 $a \equiv_m b \leftrightarrow m \mid (a - b)$

Equivalently, $a \equiv_m b$ iff a = b + km for some $k \in \mathbb{Z}$.

Last Time: Modular Arithmetic

Definition: "a is congruent to b modulo m"

For
$$a, b, m \in \mathbb{Z}$$
 with $m > 0$
 $a \equiv_m b \leftrightarrow m \mid (a - b)$

 $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

I.e., a and b are congruent modulo m iff a and b steps stop at the same spot on the "clock" with m numbers

Last Time: Modular Arithmetic: Properties

If
$$a \equiv_m b$$
 and $b \equiv_m c$, then $a \equiv_m c$

If
$$a \equiv_m b$$
 and $c \equiv_m d$, then $a + c \equiv_m b + d$

Corollary: If $a \equiv_m b$, then $a + c \equiv_m b + c$

If
$$a \equiv_m b$$
 and $c \equiv_m d$, then $ac \equiv_m bd$

Corollary: If $a \equiv_m b$, then $ac \equiv_m bc$

Last Time: Modular Arithmetic: Properties

If
$$a \equiv_m b$$
 and $b \equiv_m c$, then $a \equiv_m c$

If
$$a \equiv_m b$$
, then $a + c \equiv_m b + c$

If
$$a \equiv_m b$$
, then $ac \equiv_m bc$

- "≡" allows us to solve problems in modular arithmetic, e.g.
 - add / subtract numbers from both sides of equations
 - chains of "≡" values shows first and last are "≡"
 - substitute "≡" values in equations (not fully proven yet)

Substitution Follows From Other Properties

Given
$$2y + 3x \equiv_m 25$$
 and $x \equiv_m 7$, show that $2y + 21 \equiv_m 25$. (substituting 7 for x)

$$x \equiv_m 7$$

Multiply both sides $3x \equiv_m 21$

$$3x \equiv_m 21$$

Add to both sides

$$2y + 3x \equiv_m 2y + 21$$

Combine
$$\equiv_m$$
's

$$2y + 21 \equiv_m 2y + 3x \equiv_m 25$$

Basic Applications of mod

- Two's Complement
- Hashing
- Pseudo random number generation

n-bit Unsigned Integer Representation

• Represent integer x as sum of powers of 2:

99 =
$$64 + 32 + 2 + 1$$
 = $2^6 + 2^5 + 2^1 + 2^0$
18 = $16 + 2$ = $2^4 + 2^1$

If $b_{n-1}2^{n-1} + \cdots + b_12 + b_0$ with each $b_i \in \{0,1\}$ then binary representation is $b_{n-1}...b_2 b_1 b_0$

• For n = 8:

99: 0110 0011

18: 0001 0010

Easy to implement arithmetic $mod 2^n$... just throw away bits n+1 and up

$$2^n \mid 2^{n+k}$$
 so $b_{n+k} 2^{n+k} \equiv_{2^n} 0$ for $k \ge 0$

n-bit Unsigned Integer Representation

• Largest representable number is $2^n - 1$

$$2^{n} = 100...000$$
 (n+1 bits)
 $2^{n} - 1 = 011...111$ (n bits)

Note: $2^n - 1 = 111...111$

THE WALL STREET JOURNAL.

Berkshire Hathaway's Stock Price Is Too Much for Computers

32 bits 1 = \$0.0001 \$429,496.7295 max

Berkshire Hathaway Inc. (BRK-A)

NYSE - Nasdag Real Time Price. Currency in USD

436,401.00 +679.50 (+0.16%)

At close: 4:00PM EDT

Sign-Magnitude Integer Representation

n-bit signed integers

Suppose that $-2^{n-1} < x < 2^{n-1}$ First bit as the sign, n-1 bits for the value

$$99 = 64 + 32 + 2 + 1$$

 $18 = 16 + 2$

For n = 8:

99: 0110 0011

-18: 1001 0010

Any problems with this representation?

Suppose that $0 \le x < 2^{n-1}$

x is represented by the binary representation of xSuppose that $-2^{n-1} \le x < 0$

x is represented by the binary representation of $x + 2^n$ result is in the range $2^{n-1} \le x < 2^n$

-8 -7 -2 -1

```
Suppose that 0 \le x < 2^{n-1} x is represented by the binary representation of x Suppose that -2^{n-1} \le x < 0 x is represented by the binary representation of x + 2^n result is in the range 2^{n-1} \le x < 2^n
```

```
6 7 -8 -7 -6 -5 -4
 0
                                                                            -1
0000
     0001
          0010
              0011
                    0100
                         0101
                              0110
                                   0111
                                        1000
                                             1001
                                                  1010
                                                       1011
                                                            1100
                                                                 1101
                                                                      1110
                                                                           1111
```

$$99 = 64 + 32 + 2 + 1$$

 $18 = 16 + 2$

For n = 8:

99: 0110 0011

-18: 1110 1110

(-18 + 256 = 238)

Suppose that $0 \le x < 2^{n-1}$ x is represented by the binary representation of xSuppose that $-2^{n-1} \le x < 0$ x is represented by the binary representation of $x + 2^n$

x is represented by the binary representation of $x + 2^n$ result is in the range $2^{n-1} \le x < 2^n$

7 -8 -7 -1

Key property: First bit is still the sign bit!

Key property: Twos complement representation of any number y is equivalent to $y \mod 2^n$ so arithmetic works $\mod 2^n$

- For $0 < x \le 2^{n-1}$, -x is represented by the binary representation of $2^n x$
 - How do we calculate –x from x?
 - E.g., what happens for "return -x;" in Java?

$$2^n - x = (2^n - 1) - x + 1$$

- To compute this, flip the bits of x then add 1!
 - All 1's string is $2^n 1$, so Flip the bits of $x \equiv \text{replace } x \text{ by } 2^n - 1 - x$ Then add 1 to get $2^n - x$

Hashing

Scenario:

Map a small number of data values from a large domain $\{0, 1, ..., M - 1\}$...

...into a small set of locations $\{0,1,...,n-1\}$ so one can quickly check if some value is present

- $hash(x) = x \mod p$ for p a prime close to n- or $hash(x) = (ax + b) \mod p$
- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur

Hashing

- $hash(x) = x \mod p$ for p a prime close to n
- deterministic function with random-ish behavior
- Applications
 - map integer to location in array (hash tables)
 - map user ID or IP address to machine
 requests from the same user / IP address go to the same machine
 requests from different users / IP addresses spread randomly

Pseudo-Random Number Generation

Linear Congruential method

$$x_{n+1} = (a x_n + c) \bmod m$$

Choose random x_0 , a, c, m and produce a long sequence of x_n 's

More Number Theory Primes and GCD

Primality

An integer *p* greater than 1 is called *prime* if the only positive factors of *p* are 1 and *p*.

$$p > 1 \land \forall x \in \mathbb{N} ((x \mid p) \rightarrow ((x = 1) \lor (x = p)))$$

A positive integer that is greater than 1 and is not prime is called *composite*.

$$p > 1 \land \exists x \in \mathbb{N} ((x \mid p) \land (x \neq 1) \land (x \neq p))$$

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a "unique" prime factorization

```
48 = 2 • 2 • 2 • 2 • 2 • 3

591 = 3 • 197

45,523 = 45,523

321,950 = 2 • 5 • 5 • 47 • 137

1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803
```

Euclid's Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list $p_1, p_2, ..., p_n$.

Euclid's Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list $p_1, p_2, ..., p_n$.

Define the number $P = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_n$ and let Q = P + 1.

Euclid's Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list $p_1, p_2, ..., p_n$.

Define the number $P = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_n$ and let Q = P + 1. (Note that Q > 1.)

Case 1: Q is prime: Then Q is a prime different from all of $p_1, p_2, ..., p_n$ since it is bigger than all of them.

Case 2: Q is not prime: Then Q has some prime factor p (which must be in the list). Therefore $p \mid P$ and $p \mid Q$ so $p \mid (Q - P)$ which means that $p \mid 1$.

Both cases are contradictions, so the assumption is false (proof by cases). ■

Famous Algorithmic Problems

- Primality Testing
 - Given an integer n, determine if n is prime
- Factoring
 - Given an integer n, determine the prime factorization of n

Factoring

Factor the following 232 digit number [RSA768]:

Greatest Common Divisor

```
GCD(a, b):
```

Largest integer d such that $d \mid a$ and $d \mid b$

- GCD(100, 125) =
- GCD(17, 49) =
- GCD(11, 66) =
- GCD(13, 0) =
- GCD(180, 252) =

d is GCD iff $(d \mid a) \land (d \mid b) \land \forall x \in \mathbb{N} (((x \mid a) \land (x \mid b)) \rightarrow (x \leq d))$

GCD and Factoring

$$a = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 = 46,200$$

$$b = 2 \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 13 = 204,750$$

$$GCD(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)}$$

Factoring is expensive!

Can we compute GCD(a,b) without factoring?

Useful GCD Fact

Let a and b be positive integers. We have $gcd(a,b) = gcd(b, a \mod b)$

Proof:

We will show that every number dividing a and b also divides b and $a \mod b$. I.e. d|a and d|b iff d|b and $d|(a \mod b)$.

Hence, their set of common divisors are the same, which means that their greatest common divisor is the same.

Useful GCD Fact

Let a and b be positive integers. We have $gcd(a,b) = gcd(b, a \mod b)$

Proof:

```
By definition of mod, a = qb + (a \mod b) for some integer q = a \operatorname{div} b.
```

Suppose d|b and $d|(a \mod b)$.

Then b = md and $(a \mod b) = nd$ for some integers m and n.

Therefore $a = qb + (a \mod b) = qmd + nd = (qm + n)d$. So d|a.

Suppose d|a and d|b.

Then a = kd and b = jd for some integers k and j.

Therefore $(a \mod b) = a - qb = kd - qjd = (k - qj)d$.

So, $d \mid (a \mod b)$ also.

Since they have the same common divisors, $gcd(a, b) = gcd(b, a \mod b)$.

Another simple GCD fact

Let a be a positive integer. We have gcd(a,0) = a.

Euclid's Algorithm

```
gcd(a, b) = gcd(b, a mod b) gcd(a, 0) = a
```

```
int gcd(int a, int b){ /* Assumes: a >= b, b >= 0 */
   if (b == 0) {
      return a;
   } else {
      return gcd(b, a % b);
   }
}
```

Note: gcd(b, a) = gcd(a, b)

Euclid's Algorithm

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

gcd(660,126) =

Euclid's Algorithm

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

```
gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) = gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
= 6
```