CSE 311: Foundations of Computing

Lecture 13: Primes, GCD

Last Time: Modular Arithmetic

$(a+b) \bmod 7$
 $(\mathrm{a} \times \mathrm{b}) \bmod 7$

Replace number line with a clock.
Taking m steps returns to the same place.

$$
\begin{array}{ll}
\text { where you stop } & r=x \bmod m \\
x=\underbrace{q m}_{\text {full rotations }}+r & q=x \operatorname{div} m
\end{array}
$$

Makes the answers small since $0 \leq r<m$
Unclear (so far) that modular arithmetic has the same properties as ordinary arithmetic....

Last Time: Modular Arithmetic

Idea: Find replacement for "=" that works for modular arithmetic
"=" on ordinary numbers allows us to solve problems, e.g. - add / subtract numbers from both sides of equations

- substitute "=" values in equations

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with $m>0$

$$
a \equiv_{m} b \leftrightarrow m \mid(a-b)
$$

Equivalently, $a \equiv_{m} b$ iff $a=b+k m$ for some $k \in \mathbb{Z}$.

Last Time: Modular Arithmetic

Definition: "a is congruent to b modulo m"

$$
\begin{aligned}
& \text { For } a, b, m \in \mathbb{Z} \text { with } m>0 \\
& \qquad a \equiv_{m} b \leftrightarrow m \mid(a-b)
\end{aligned}
$$

$\boldsymbol{a} \equiv_{m} \boldsymbol{b}$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
l.e., \boldsymbol{a} and \boldsymbol{b} are congruent modulo m iff \boldsymbol{a} and \boldsymbol{b} steps stop at the same spot on the "clock" with m numbers

Last Time: Modular Arithmetic: Properties

$$
\text { If } \boldsymbol{a} \equiv_{m} \boldsymbol{b} \text { and } \boldsymbol{b} \equiv_{m} \boldsymbol{c} \text {, then } \boldsymbol{a} \equiv_{m} \boldsymbol{c}
$$

$$
\text { If } \boldsymbol{a} \equiv_{m} \boldsymbol{b} \text { and } \boldsymbol{c} \equiv_{m} \boldsymbol{d} \text {, then } \boldsymbol{a}+\boldsymbol{c} \equiv_{m} \boldsymbol{b}+\boldsymbol{d}
$$

Corollary: If $\boldsymbol{a} \equiv_{m} \boldsymbol{b}$, then $\boldsymbol{a}+\boldsymbol{c} \equiv_{m} \boldsymbol{b}+\boldsymbol{c}$

$$
\text { If } \boldsymbol{a} \equiv_{m} \boldsymbol{b} \text { and } \boldsymbol{c} \equiv_{m} \boldsymbol{d} \text {, then } \boldsymbol{a} \boldsymbol{c} \equiv_{m} \boldsymbol{b} \boldsymbol{d}
$$

Corollary: If $\boldsymbol{a} \equiv_{m} \boldsymbol{b}$, then $\boldsymbol{a} \boldsymbol{c} \equiv_{m} \boldsymbol{b} \boldsymbol{c}$

Last Time：Modular Arithmetic：Properties

$$
\begin{aligned}
& \text { If } \boldsymbol{a} \equiv_{m} \boldsymbol{b} \text { and } \boldsymbol{b} \equiv_{m} \boldsymbol{c}, \text { then } \boldsymbol{a} \equiv_{m} \boldsymbol{c} \\
& \text { If } \boldsymbol{a} \equiv_{m} \boldsymbol{b} \text {, then } \boldsymbol{a}+\boldsymbol{c} \equiv_{m} \boldsymbol{b}+\boldsymbol{c} \\
& \text { If } \boldsymbol{a} \equiv_{m} \boldsymbol{b} \text {, then } \boldsymbol{a} \boldsymbol{c} \equiv_{m} \boldsymbol{b} \boldsymbol{c}
\end{aligned}
$$

＂三＂allows us to solve problems in modular arithmetic，e．g．
－add／subtract numbers from both sides of equations

- chains of＂三＂values shows first and last are＂三＂
- substitute＂三＂values in equations（not fully proven yet）

Substitution Follows From Other Properties

Given $2 y+3 x \equiv_{m} 25$ and $x \equiv_{m} 7$, show that $2 y+21 \equiv_{m} 25$. (substituting 7 for x)

Start from

$$
x \equiv_{m} 7
$$

Multiply both sides $3 x \equiv_{m} 21$

Add to both sides

$$
2 y+3 x \equiv_{m} 2 y+21
$$

Combine \equiv_{m} 's
$2 y+21 \equiv_{m} 2 \mathrm{y}+3 x \equiv_{m} 25$

Basic Applications of mod

- Two's Complement
- Hashing
- Pseudo random number generation

n-bit Unsigned Integer Representation

- Represent integer x as sum of powers of 2 :
$99=64+32+2+1=2^{6}+2^{5}+2^{1}+2^{0}$
$18=16+2=2^{4}+2^{1}$
If $b_{n-1} 2^{n-1}+\cdots+b_{1} 2+b_{0}$ with each $b_{i} \in\{0,1\}$ then binary representation is $b_{n-1} \ldots b_{2} b_{1} b_{0}$
- For $\mathrm{n}=8$:

99: 01100011
18: 00010010

Easy to implement arithmetic $\bmod 2^{n}$
... just throw away bits $n+1$ and up

$$
\begin{aligned}
& 2^{n} \mid 2^{n+k} \quad \text { so } \quad b_{n+k} 2^{n+k} \equiv 2^{n} 0 \\
& \text { for } k \geq 0
\end{aligned}
$$

n-bit Unsigned Integer Representation

- Largest representable number is $2^{n}-1$

$$
\begin{aligned}
2^{n} & =100 \ldots 000 & & (n+1 \text { bits }) \\
2^{n}-1 & =011 \ldots . .111 & & \text { (n bits) }
\end{aligned}
$$

Note: $2^{n}-1=111 \ldots . .111$

THE WALL STREET JOURNAL.
Berkshire Hathaway's Stock Price Is 100
Much for Computers
32 bits
1 = \$0.0001
\$429,496.7295 max

Berkshire Hathaway Inc. (BRK-A)
NYSE - Nasdaq Real Time Price. Currency in USD
436,401.00 $+679.50(+0.16 \%)$
At close: 4:00PM EDT

Sign-Magnitude Integer Representation

n-bit signed integers
Suppose that $-2^{n-1}<x<2^{n-1}$
First bit as the sign, $n-1$ bits for the value
$99=64+32+2+1$
$18=16+2$

For $\mathrm{n}=8$:
99: 01100011
-18: 10010010

Any problems with this representation?

Two's Complement Representation

Suppose that $0 \leq x<2^{n-1}$
x is represented by the binary representation of x
Suppose that $-2^{n-1} \leq x<0$
x is represented by the binary representation of $x+2^{n}$ result is in the range $2^{n-1} \leq x<2^{n}$

$+2^{n}$

0	1	2	3	4	5	6	7	-8	-7	-6	-5	-4	-3	-2	-1
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

Two's Complement Representation

Suppose that $0 \leq x<2^{n-1}$
x is represented by the binary representation of x
Suppose that $-2^{n-1} \leq x<0$
x is represented by the binary representation of $x+2^{n}$ result is in the range $2^{n-1} \leq x<2^{n}$

0	1	2	3	4	5	6	7	-8	-7	-6	-5	-4	-3	-2	-1
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

$$
\begin{aligned}
& 99=64+32+2+1 \\
& 18=16+2
\end{aligned}
$$

For $\mathrm{n}=8$:
99: 01100011
-18: 11101110
$(-18+256=238)$

Two's Complement Representation

Suppose that $0 \leq x<2^{n-1}$
x is represented by the binary representation of x
Suppose that $-2^{n-1} \leq x<0$
x is represented by the binary representation of $x+2^{n}$
result is in the range $2^{n-1} \leq x<2^{n}$

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |

Key property: First bit is still the sign bit!
Key property: Twos complement representation of any number \boldsymbol{y} is equivalent to $\boldsymbol{y} \boldsymbol{\operatorname { m o d }} \mathbf{2}^{\boldsymbol{n}}$ so arithmetic works $\boldsymbol{\operatorname { m o d }} \mathbf{2}^{\boldsymbol{n}}$

Two's Complement Representation

- For $0<x \leq 2^{n-1},-x$ is represented by the binary representation of $2^{n}-x$
- How do we calculate -x from x ?
- E.g., what happens for "return -x;" in Java?

$$
2^{n}-x=\left(2^{n}-1\right)-x+1
$$

- To compute this, flip the bits of x then add 1 !
- All 1 's string is $2^{n}-1$, so

Flip the bits of $x \equiv$ replace x by $2^{n}-1-x$
Then add 1 to get $2^{n}-x$

Hashing

Scenario:

Map a small number of data values from a large domain $\{0,1, \ldots, M-1\}$...
...into a small set of locations $\{0,1, \ldots, n-1\}$ so one can quickly check if some value is present

- hash $(x)=x \bmod p$ for p a prime close to n
- or hash $(x)=(a x+b) \bmod p$
- Depends on all of the bits of the data
- helps avoid collisions due to similar values
- need to manage them if they occur

Hashing

- hash $(x)=x \bmod p$ for p a prime close to n
- deterministic function with random-ish behavior
- Applications
- map integer to location in array (hash tables)
- map user ID or IP address to machine
requests from the same user / IP address go to the same machine requests from different users / IP addresses spread randomly

Pseudo-Random Number Generation

Linear Congruential method

$$
x_{n+1}=\left(a x_{n}+c\right) \bmod m
$$

Choose random x_{0}, a, c, m and produce a long sequence of x_{n} 's

More Number Theory Primes and GCD

Primality

An integer p greater than 1 is called prime if the only positive factors of p are 1 and p.

$$
p>1 \wedge \forall \mathrm{x} \in \mathbb{N}((x \mid p) \rightarrow((x=1) \vee(x=p)))
$$

A positive integer that is greater than 1 and is not prime is called composite.

$$
p>1 \wedge \exists \mathrm{x} \in \mathbb{N}((x \mid p) \wedge(x \neq 1) \wedge(x \neq p))
$$

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a "unique" prime factorization

$$
\begin{aligned}
& 48=2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \\
& 591=3 \cdot 197 \\
& 45,523=45,523 \\
& 321,950=2 \cdot 5 \cdot 5 \cdot 47 \cdot 137 \\
& 1,234,567,890=2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803
\end{aligned}
$$

Euclid's Theorem

There are an infinite number of primes.
Proof by contradiction:
Suppose that there are only a finite number of primes and call the full list $p_{1}, p_{2}, \ldots, p_{n}$.

Euclid's Theorem

There are an infinite number of primes.
Proof by contradiction:
Suppose that there are only a finite number of primes and call the full list $p_{1}, p_{2}, \ldots, p_{n}$.
Define the number $P=p_{1} \cdot p_{2} \cdot p_{3} \cdot \cdots \cdot p_{n}$ and let

$$
Q=P+1 .
$$

Euclid's Theorem

There are an infinite number of primes.

Proof by contradiction:
Suppose that there are only a finite number of primes and call the full list $p_{1}, p_{2}, \ldots, p_{n}$.
Define the number $P=p_{1} \cdot p_{2} \cdot p_{3} \cdot \cdots \cdot p_{n}$ and let

$$
Q=P+1 .(\text { Note that } Q>1 .)
$$

Case 1: Q is prime: Then Q is a prime different from all of $p_{1}, p_{2}, \ldots, p_{n}$ since it is bigger than all of them.
Case 2: Q is not prime: Then Q has some prime factor p (which must be in the list). Therefore $p \mid P$ and $p \mid Q$ so $p \mid(Q-P)$ which means that $p \mid 1$.
Both cases are contradictions, so the assumption is false (proof by cases).

Famous Algorithmic Problems

- Primality Testing
- Given an integer n, determine if n is prime
- Factoring
- Given an integer n, determine the prime factorization of n

Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077 285356959533479219732245215172640050726 365751874520219978646938995647494277406 384592519255732630345373154826850791702 612214291346167042921431160222124047927 4737794080665351419597459856902143413

12301866845301177551304949583849627207728535695953347 92197322452151726400507263657518745202199786469389956 47494277406384592519255732630345373154826850791702612 21429134616704292143116022212404792747377940806653514 19597459856902143413

334780716989568987860441698482126908177047949837 137685689124313889828837938780022876147116525317 43087737814467999489

367460436667995904282446337996279526322791581643 43087642676032283815739665112792333734171433968 10270092798736308917

Greatest Common Divisor

GCD (a, b):

Largest integer d such that $d \mid a$ and $d \mid b$

- $\operatorname{GCD}(100,125)=$
- $\operatorname{GCD}(17,49)=$
- $\operatorname{GCD}(11,66)=$
- $\operatorname{GCD}(13,0)=$
- $\operatorname{GCD}(180,252)=$

GCD and Factoring

$a=2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11=46,200$
$\mathrm{b}=2 \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 13=204,750$
$\operatorname{GCD}(\mathrm{a}, \mathrm{b})=2^{\min (3,1)} \cdot 3^{\min (1,2)} \cdot 5^{\min (2,3)} \cdot 7^{\min (1,1)} \cdot 11_{\min (1,0)} \cdot 13^{\min (0,1)}$

Factoring is expensive!
Can we compute GCD(a,b) without factoring?

Useful GCD Fact

Let a and b be positive integers. We have $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$

Proof:
We will show that every number dividing a and b also divides b and $a \bmod b$. I.e. $d \mid a$ and $d \mid b$ iff $d \mid b$ and $d \mid(a \bmod b)$.

Hence, their set of common divisors are the same, which means that their greatest common divisor is the same.

Useful GCD Fact

Let a and b be positive integers. We have $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$

Proof:

By definition of $\bmod , a=q b+(a \bmod b)$ for some integer $q=a \operatorname{div} b$.
Suppose $d \mid b$ and $d \mid(a \bmod b)$.
Then $b=m d$ and $(a \bmod b)=n d$ for some integers m and n.
Therefore $a=q b+(a \bmod b)=q m d+n d=(q m+n) d$.
So d|a.
Suppose $d \mid a$ and $d \mid b$.
Then $a=k d$ and $b=j d$ for some integers k and j.
Therefore $(a \bmod b)=a-q b=k d-q j d=(k-q j) d$.
So, $d \mid(a \bmod b)$ also.
Since they have the same common divisors, $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$.

Another simple GCD fact

Let a be a positive integer. We have $\operatorname{gcd}(a, 0)=a$.

Euclid's Algorithm

```
gcd(a, b) = gcd(b, a mod b) gcd(a, 0) = a
```

int gcd(int a, int b)\{ /* Assumes: a >= b, b >= 0 */
if (b == 0) \{
return a;
\} else \{
return $\operatorname{gcd}(b, a \% b)$;
\}
\}
Note: $\operatorname{gcd}(\mathrm{b}, \mathrm{a})=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$

Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.
$\operatorname{gcd}(660,126)=$

Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.
$\operatorname{gcd}(660,126)=\operatorname{gcd}(126,660 \bmod 126)=\operatorname{gcd}(126,30)$

$$
\begin{array}{ll}
=\operatorname{gcd}(30,126 \bmod 30) & =\operatorname{gcd}(30,6) \\
=\operatorname{gcd}(6,30 \bmod 6) & =\operatorname{gcd}(6,0) \\
=6 &
\end{array}
$$

