
CSE 311: Foundations of Computing

Lecture 12:  Modular Arithmetic and Applications



Administrivia

• HW3 solutions after class

• HW4 released on Saturday
• Remember to start early!
–most problems require a formal proof and then 

a translation into an English proof
– English proofs going forward

• Never hear people say “I can write 64-bit 
ARM assembly but not Java”



Check Your Understanding.  Which of the following are true?

5 |	1 25 | 5 5 | 0 3 |	2

1 | 5 5 | 25 0 | 5 2 | 3

Last Class: Divisibility

5 | 1 iff 1 = 5k

1 | 5 iff 5 = 1k

25 | 5 iff 5 = 25k

5 | 25 iff 25 = 5k

5 | 0 iff 0 = 5k

0 | 5 iff 5 = 0k

3 | 2 iff 2 = 3k

2 | 3 iff 3 = 2k

For 𝑎 ∈ ℤ, 𝑏 ∈ ℤ with 𝑏 ≠ 0:
𝑏 | 𝑎 ↔ ∃𝑞 ∈ ℤ (𝑎 = 𝑞𝑏)

Definition: “b divides a”



For 𝑎, 𝑏 ∈ ℤ with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏 | 𝑎, then, by definition, we have 𝑎 = 𝑞𝑏 for some 𝑞 ∈ ℤ.
The number 𝑞 is called the quotient.

Dividing both sides by 𝑏, we can write this as

𝑎
𝑏 = 𝑞

(We want to stick to integers, though, so we’ll write 𝑎 = 𝑞𝑏.)

Recall: Elementary School Division



For 𝑎, 𝑏 ∈ ℤ with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏 ∤ 𝑎, then we end up with a remainder 𝑟 ∈ ℤ with 0 < 𝑟 < 𝑏.
Now,

instead of we have 

Multiplying both sides by 𝑏 gives us  𝑎 = 𝑞𝑏 + 𝑟
(A bit nicer since it has no fractions.)

Recall: Elementary School Division

𝑎
𝑏 = 𝑞

𝑎
𝑏 = 𝑞 +

𝑟
𝑏



For 𝑎, 𝑏 ∈ ℤ with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏 | 𝑎, then we have 𝑎 = 𝑞𝑏 for some 𝑞 ∈ ℤ.
If 𝑏 ∤ 𝑎, then we have 𝑎 = 𝑞𝑏 + 𝑟 for some 𝑞, 𝑟 ∈ ℤ with 0 < r < b.

In general, we have 𝑎 = 𝑞𝑏 + 𝑟 for some 𝑞, 𝑟 ∈ ℤ with 0 ≤ 𝑟 < 𝑏,
where 𝑟 = 0 iff 𝑏 | 𝑎.

Recall: Elementary School Division



To put it another way, if we divide b into a, we get a 
unique quotient                                                                     
and non-negative remainder

Division Theorem

q = a div b

Note: r ≥ 0 even if a < 0.  
Not quite the same as  a%d.

For 𝑎, 𝑏 ∈ ℤ with 𝑏 > 0
there exist unique integers q, r with 0 ≤ 𝑟 < 𝑏
such that 𝑎 = 𝑞𝑏 + 𝑟.

Division Theorem

r = a mod b



To put it another way, if we divide b into a, we get a 
unique quotient                                                                     
and non-negative remainder

Division Theorem

q = a div b

Note: r ≥ 0 even if a < 0.  
Not quite the same as  a%d.

r = a mod b

public class Test2 {
public static void main(String args[]) {

int a = -5;
int d = 2;
System.out.println(a % d);

}
}

For 𝑎, 𝑏 ∈ ℤ with 𝑏 > 0
there exist unique integers q, r with 0 ≤ 𝑟 < 𝑏
such that 𝑎 = 𝑞𝑏 + 𝑟.

Division Theorem



While div is more familiar, our focus is on mod:
• provides a bound on the size (0 ≤ 𝑟 < 𝑏)
• need to connect that somehow to arithmetic...

Division Theorem

q = a div b r = a mod b

For 𝑎, 𝑏 ∈ ℤ with 𝑏 > 0
there exist unique integers q, r with 0 ≤ 𝑟 < 𝑏
such that 𝑎 = 𝑞𝑏 + 𝑟.

Division Theorem



Ordinary arithmetic

-3 -2 -1 0 1 2 3 4 5 6 7

+3

2 + 3 = 5



Arithmetic on a Clock

0
1

2

34

5

6

2 + 3 = 5

23 = 3 · 7 + 2

0
1

2

34

5

6

If 𝑎 = 𝑞𝑏 + 𝑟, then 𝑟 (= 𝑎mod 𝑏) is
where you stop after taking 𝑎 steps on the clock



Arithmetic, mod 7

(a + b) mod 7
(a ´ b) mod 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

0
1

2

34

5

6



Modular Arithmetic

New notion of “sameness” that will help us 
understand modular arithmetic

For 𝑎, 𝑏,𝑚 ∈ ℤ with 𝑚 > 0
𝑎 ≡! 𝑏 ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”



Modular Arithmetic

The standard math notation is

𝑎 ≡ 𝑏 mod𝑚

A chain of equivalences is written

𝑎 ≡ 𝑏 ≡ 𝑐 ≡ 𝑑 mod𝑚

Many students find this confusing,
so we will use ≡! instead.

For 𝑎, 𝑏,𝑚 ∈ ℤ with 𝑚 > 0
𝑎 ≡! 𝑏 ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”



Modular Arithmetic

Check Your Understanding.  What do each of these mean?
When are they true?

x ≡2 0

-1 ≡5 19

y ≡7 2

For 𝑎, 𝑏,𝑚 ∈ ℤ with 𝑚 > 0
𝑎 ≡! 𝑏 ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”

This statement is the same as saying “x is even”; so, any x that is 
even (including negative even numbers) will work.

This statement is true.  19 - (-1) = 20 which is divisible by 5

This statement is true for  y in { ..., -12, -5, 2, 9, 16, ...}.  In other 
words, all y of the form 2+7k for k an integer. 



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.



Modular Arithmetic: A Property

Suppose that 𝑎 mod𝑚 = 𝑏 mod𝑚.

By the division theorem, 𝑎 = 𝑚𝑞 + (𝑎 mod𝑚) and
𝑏 = 𝑚𝑠 + (𝑏 mod𝑚) for some integers 𝑞,𝑠.

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.



Modular Arithmetic: A Property

Suppose that 𝑎 mod𝑚 = 𝑏 mod𝑚.

By the division theorem, 𝑎 = 𝑚𝑞 + (𝑎 mod𝑚) and
𝑏 = 𝑚𝑠 + (𝑏 mod𝑚) for some integers 𝑞,𝑠.

Then, 𝑎 –𝑏 = (𝑚𝑞 + (𝑎 mod𝑚)) – (𝑚𝑠 + (𝑏 mod𝑚))
= 𝑚(𝑞 – 𝑠) + (𝑎 mod𝑚 – 𝑏 mod𝑚)
= 𝑚(𝑞 – 𝑠) since 𝑎 mod𝑚 = 𝑏 mod𝑚

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.



Modular Arithmetic: A Property

Suppose that 𝑎 mod𝑚 = 𝑏 mod𝑚.

By the division theorem, 𝑎 = 𝑚𝑞 + (𝑎 mod𝑚) and
𝑏 = 𝑚𝑠 + (𝑏 mod𝑚) for some integers 𝑞,𝑠.

Then, 𝑎 –𝑏 = (𝑚𝑞 + (𝑎 mod𝑚)) – (𝑚𝑠 + (𝑏 mod𝑚))
= 𝑚(𝑞 – 𝑠) + (𝑎 mod𝑚 – 𝑏 mod𝑚)
= 𝑚(𝑞 – 𝑠) since 𝑎 mod𝑚 = 𝑏 mod𝑚

Therefore, 𝑚 | (𝑎 − 𝑏) and so  𝑎 ≡! 𝑏.

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.

Suppose that 𝑎 ≡! 𝑏.

Then, 𝑚 | (𝑎 – 𝑏) by definition of congruence.
So, 𝑎 –𝑏 = 𝑘𝑚 for some integer 𝑘 by definition of divides.
Therefore, 𝑎 = 𝑏 + 𝑘𝑚. 



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.

Suppose that 𝑎 ≡! 𝑏.

Then, 𝑚 | (𝑎 – 𝑏) by definition of congruence.
So, 𝑎 –𝑏 = 𝑘𝑚 for some integer 𝑘 by definition of divides.
Therefore, 𝑎 = 𝑏 + 𝑘𝑚. 

By the Division Theorem, we have 𝑎 = 𝑞𝑚 + 𝑎 mod𝑚 ,
where 0 ≤ (𝑎 mod𝑚) < 𝑚.



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎 be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.

Suppose that 𝑎 ≡! 𝑏.

Then, 𝑚 | (𝑎 – 𝑏) by definition of congruence.
So, 𝑎 –𝑏 = 𝑘𝑚 for some integer 𝑘 by definition of divides.
Therefore, 𝑎 = 𝑏 + 𝑘𝑚. 

By the Division Theorem, we have 𝑎 = 𝑞𝑚 + 𝑎 mod𝑚 ,
where 0 ≤ (𝑎 mod𝑚) < 𝑚.

Combining these, we have 𝑞𝑚 + 𝑎 mod𝑚 = 𝑎 = 𝑏 + 𝑘𝑚
or equiv., b = 𝑞𝑚 − 𝑘𝑚 + 𝑎 mod𝑚 = 𝑞 − 𝑘 𝑚 + 𝑎 mod𝑚 .
By the Division Theorem, we have 𝑏 mod𝑚 = 𝑎 mod𝑚.



The mod𝑚 function vs the≡! predicate

• What we have just shown
– The mod𝑚 function takes any 𝑎 ∈ ℤ and maps 

it to a remainder 𝑎 mod𝑚 ∈ {0,1, . . , 𝑚 − 1}.

– Imagine grouping together all integers that have 
the same value of the mod𝑚 function

That is, the same remainder in 0,1, . . , 𝑚 − 1 .

– The ≡% predicate compares 𝑎, 𝑏 ∈ ℤ. It is true 
if and only if the mod𝑚 function has the same 
value on 𝑎 and on 𝑏. 

That is, 𝑎 and 𝑏 are in the same group.



• If 𝑎 = 𝑏 and 𝑏 = 𝑐, then 𝑎 = 𝑐.
− i.e., if 𝑎 = 𝑏 = 𝑐, then 𝑎 = 𝑐

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎 + 𝑐 = 𝑏 + 𝑑.
− in particular, since 𝑐 = 𝑐 is true, we can “+ 𝑐” to both sides

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎𝑐 = 𝑏𝑑.
− in particular, since 𝑐 = 𝑐 is true, we can “×𝑐” to both sides

Recall: Familiar Properties of “=”

These are the facts that allow us to 
use algebra to solve problems



Modular Arithmetic: Basic Property

Let 𝒎 be a positive integer.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.



Modular Arithmetic: Basic Property

Suppose that 𝑎 ≡! 𝑏 and 𝑏 ≡! 𝑐. 

Let 𝒎 be a positive integer.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.



Modular Arithmetic: Basic Property

Suppose that 𝑎 ≡! 𝑏 and 𝑏 ≡! 𝑐. Then, by the 
previous property, we have 𝑎 mod𝑚 = 𝑏 mod𝑚
and 𝑏 mod𝑚 = 𝑐 mod𝑚. 

Putting these together, we have 𝑎 mod𝑚 = 𝑐 mod𝑚, 
which says that 𝑎 ≡! 𝑐, by the previous property.

Let 𝒎 be a positive integer.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.



Modular Arithmetic: Addition Property

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.



Modular Arithmetic: Addition Property

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.  Unrolling the definitions, we 
can see that 𝑎 –𝑏 = 𝑘𝑚 and 𝑐 – 𝑑 = 𝑗𝑚 for some 𝑘, 𝑗 ∈ ℤ.

Adding the equations together gives us 
(𝑎 + 𝑐) – (𝑏 + 𝑑) = 𝑚(𝑘 + 𝑗).

By the definition of congruence, we have 𝑎 + 𝑐 ≡! 𝑏 + 𝑑.

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.



Modular Arithmetic: Multiplication Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Multiplication Property

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑. 

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Multiplication Property

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.  Unrolling the definitions, we 
can see that 𝑎 –𝑏 = 𝑘𝑚 and 𝑐 – 𝑑 = 𝑗𝑚 for some 𝑘, 𝑗 ∈ ℤ or 
equivalently, 𝑎 = 𝑘𝑚 + 𝑏 and 𝑐 = 𝑗𝑚 + 𝑑.

Multiplying both together gives us  𝑎𝑐 = (𝑘𝑚 + 𝑏)(𝑗𝑚 + 𝑑) =
𝑘𝑗𝑚2+ 𝑘𝑚𝑑 + 𝑏𝑗𝑚 + 𝑏𝑑. 

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Multiplication Property

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.  Unrolling the definitions, we 
can see that 𝑎 –𝑏 = 𝑘𝑚 and 𝑐 – 𝑑 = 𝑗𝑚 for some 𝑘, 𝑗 ∈ ℤ or 
equivalently, 𝑎 = 𝑘𝑚 + 𝑏 and 𝑐 = 𝑗𝑚 + 𝑑.

Multiplying both together gives us  𝑎𝑐 = (𝑘𝑚 + 𝑏)(𝑗𝑚 + 𝑑) =
𝑘𝑗𝑚2+ 𝑘𝑚𝑑 + 𝑏𝑗𝑚 + 𝑏𝑑. Re-arranging, this becomes 
𝑎𝑐 – 𝑏𝑑 = 𝑚(𝑘𝑗𝑚 + 𝑘𝑑 + 𝑏𝑗).

This says 𝑎𝑐 ≡! 𝑏𝑑 by the definition of congruence.

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Properties

If 𝒂 ≡𝒎 𝒃, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒄.Corollary:

If 𝒂 ≡𝒎 𝒃, then 𝒂𝒄 ≡𝒎 𝒃𝒄.Corollary:

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅.

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.



Modular Arithmetic: Properties

“≡𝒎” allows us to solve problems in modular arithmetic, e.g.
• add / subtract numbers from both sides of equations
• chains of “≡𝒎” values shows first and last are “≡𝒎”
• substitute “≡𝒎” values in equations (not proven yet)

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

If 𝒂 ≡𝒎 𝒃, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒄.

If 𝒂 ≡𝒎 𝒃, then 𝒂𝒄 ≡𝒎 𝒃𝒄.



Example

Let 𝒏 be an integer.  Prove that 𝒏𝟐 ≡𝟒 𝟎 or 𝒏𝟐 ≡𝟒 𝟏.

Let’s start by looking a a small example:
02 = 0 ≡4 0
12 = 1 ≡4 1
22 = 4 ≡4 0
32 = 9 ≡4 1
42 = 16 ≡4 0



Example

Let’s start by looking a a small example:
02 = 0 ≡4 0
12 = 1 ≡4 1
22 = 4 ≡4 0
32 = 9 ≡4 1
42 = 16 ≡4 0

It looks like 
n ≡2 0 → n2 ≡4 0, and
n ≡2 1 → n2 ≡4 1.

Case 1 (n is even):

Let 𝒏 be an integer.  Prove that 𝒏𝟐 ≡𝟒 𝟎 or 𝒏𝟐 ≡𝟒 𝟏.



Example

Case 1 (𝑛 is even):
Suppose 𝑛 is even.  
Then, 𝑛 = 2𝑘 for some integer 𝑘.
So, 𝑛2 = (2𝑘)#= 4𝑘2 = 4𝑘2+ 0. 
So, by the definition of congruence, 
we have 𝑛2 ≡$ 0.

Let 𝒏 be an integer.  Prove that 𝒏𝟐 ≡𝟒 𝟎 or 𝒏𝟐 ≡𝟒 𝟏.

It looks like 
n ≡2 0 → n2 ≡4 0, and
n ≡2 1 → n2 ≡4 1.

Let’s start by looking a a small example:
02 = 0 ≡4 0
12 = 1 ≡4 1
22 = 4 ≡4 0
32 = 9 ≡4 1
42 = 16 ≡4 0



Example

Case 1 (n is even): Done.

Case 2 (n is odd):

Let 𝒏 be an integer.  Prove that 𝒏𝟐 ≡𝟒 𝟎 or 𝒏𝟐 ≡𝟒 𝟏.

It looks like 
n ≡2 0 → n2 ≡4 0, and
n ≡2 1 → n2 ≡4 1.

Let’s start by looking a a small example:
02 = 0 ≡4 0
12 = 1 ≡4 1
22 = 4 ≡4 0
32 = 9 ≡4 1
42 = 16 ≡4 0



Example

Case 1 (𝑛 is even): Done.

Case 2 (𝑛 is odd):
Suppose 𝑛 is odd.
Then, 𝑛 = 2𝑘 + 1 for some integer 𝑘.
So, 𝑛2 = 2𝑘 + 1 #

= 4𝑘2+ 4𝑘 + 1
= 4(𝑘2+ 𝑘) + 1. 

So, by definition of congruence,
we have 𝑛2 ≡$ 1.

Result follows by proof by cases since n is either even or odd

Let 𝒏 be an integer.  Prove that 𝒏𝟐 ≡𝟒 𝟎 or 𝒏𝟐 ≡𝟒 𝟏.

It looks like 
n ≡2 0 → n2 ≡4 0, and
n ≡2 1 → n2 ≡4 1.

Let’s start by looking a a small example:
02 = 0 ≡4 0
12 = 1 ≡4 1
22 = 4 ≡4 0
32 = 9 ≡4 1
42 = 16 ≡4 0


