CSE 311: Foundations of Computing

Lecture 12: Modular Arithmetic and Applications

Administrivia

- HW3 solutions after class
- HW4 released on Saturday
- Remember to start early!
- most problems require a formal proof and then a translation into an English proof
- English proofs going forward
- Never hear people say "I can write 64-bit ARM assembly but not Java"

Last Class: Divisibility

Definition: "b divides a"
For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $b \neq 0$:

$$
b \mid a \leftrightarrow \exists q \in \mathbb{Z}(a=q b)
$$

Check Your Understanding. Which of the following are true?
$5 \mid 1$
$5 \mid 1$ iff $1=5 k$
$1 \mid 5$

1 | 5 iff $5=1 k$

$$
25 \mid 5
$$

25 | 5 iff $5=25 k$
$5 \frac{5 \mid 25}{5 \mid 25 \text { iff } 25=5 k}$
0 | 5 iff $5=0 k$
2 | 3 iff 3 = 2k

Recall: Elementary School Division

For $a, b \in \mathbb{Z}$ with $b>0$, we can divide b into a.

If $b \mid a$, then, by definition, we have $a=q b$ for some $q \in \mathbb{Z}$. The number q is called the quotient.

Dividing both sides by b, we can write this as

$$
\frac{a}{b}=q
$$

(We want to stick to integers, though, so we'll write $a=q b$.)

Recall: Elementary School Division

For $a, b \in \mathbb{Z}$ with $b>0$, we can divide b into a.

If $b \nmid a$, then we end up with a remainder $r \in \mathbb{Z}$ with $0<r<b$. Now,
instead of $\quad \frac{a}{b}=q \quad$ we have $\quad \frac{a}{b}=q+\frac{r}{b}$

Multiplying both sides by b gives us

$$
a=q b+r
$$

(A bit nicer since it has no fractions.)

Recall: Elementary School Division

For $a, b \in \mathbb{Z}$ with $b>0$, we can divide b into a.

If $b \mid a$, then we have $a=q b$ for some $q \in \mathbb{Z}$.
If $b \nmid a$, then we have $a=q b+r$ for some $q, r \in \mathbb{Z}$ with $0<\mathrm{r}<\mathrm{b}$.

In general, we have $a=q b+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r<b$, where $r=0$ iff $b \mid a$.

Division Theorem

Division Theorem

For $a, b \in \mathbb{Z}$ with $b>0$
there exist unique integers q, r with $0 \leq r<b$ such that $a=q b+r$.

To put it another wav, if we divide b into a, we get a unique quotient $q=a \operatorname{div} b$ and non-negative remainder $r=a \bmod b$

Division Theorem

Division Theorem

For $a, b \in \mathbb{Z}$ with $b>0$
there exist unique integers q, r with $0 \leq r<b$ such that $a=q b+r$.

To put it another wav, if we divide b into a, we get a unique quotient $q=a \operatorname{div} b$ and non-negative remainder $r=a \bmod b$

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
}
```

Note: $\mathrm{r} \geq 0$ even if $\mathrm{a}<0$. Not quite the same as $a \% d$.

Division Theorem

Division Theorem

For $a, b \in \mathbb{Z}$ with $b>0$
there exist unique integers q, r with $0 \leq r<b$ such that $a=q b+r$.

$$
q=a \operatorname{div} b \quad r=a \bmod b
$$

While div is more familiar, our focus is on mod:

- provides a bound on the size $(0 \leq r<b)$
- need to connect that somehow to arithmetic...

Ordinary arithmetic

$$
2+3=5
$$

Arithmetic on a Clock

$$
2+3=5
$$

$23=3 \cdot 7+2$

If $a=q b+r$, then $r(=a \bmod b)$ is where you stop after taking a steps on the clock

Arithmetic, mod 7

$(a+b) \bmod 7$
 $(a \times b) \bmod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with $m>0$

$$
a \equiv_{m} b \leftrightarrow m \mid(a-b)
$$

New notion of "sameness" that will help us understand modular arithmetic

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with $m>0$

$$
a \equiv_{m} b \leftrightarrow m \mid(a-b)
$$

The standard math notation is

$$
a \equiv b(\bmod m)
$$

A chain of equivalences is written

$$
a \equiv b \equiv c \equiv d(\bmod m)
$$

Many students find this confusing, so we will use \equiv_{m} instead.

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with $m>0$

$$
a \equiv_{m} b \leftrightarrow m \mid(a-b)
$$

Check Your Understanding. What do each of these mean? When are they true?
$x \equiv_{2} 0$
This statement is the same as saying " x is even"; so, any x that is even (including negative even numbers) will work.
$-1 \equiv_{5} 19$
This statement is true. $19-(-1)=20$ which is divisible by 5
$y \equiv_{7} 2$
This statement is true for y in $\{\ldots,-12,-5,2,9,16, \ldots\}$. In other words, all y of the form $2+7 \mathrm{k}$ for k an integer.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \bmod m=b \bmod m$.

By the division theorem, $a=m q+(a \bmod m)$ and
$b=m s+(b \bmod m)$ for some integers q, s.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \bmod m=b \bmod m$.

By the division theorem, $a=m q+(a \bmod m)$ and
$b=m s+(b \bmod m)$ for some integers q, s.
Then, $a-b=(m q+(a \bmod m))-(m s+(b \bmod m))$
$=m(q-s)+(a \bmod m-b \bmod m)$
$=m(q-s)$ since $a \bmod m=b \bmod m$

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \bmod m=b \bmod m$.
By the division theorem, $a=m q+(a \bmod m)$ and
$b=m s+(b \bmod m)$ for some integers q, s.
Then, $a-b=(m q+(a \bmod m))-(m s+(b \bmod m))$
$=m(q-s)+(a \bmod m-b \bmod m)$
$=m(q-s)$ since $a \bmod m=b \bmod m$
Therefore, $m \mid(a-b)$ and so $a \equiv_{m} b$.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \equiv_{m} b$.

Then, $m \mid(a-b)$ by definition of congruence. So, $a-b=k m$ for some integer k by definition of divides. Therefore, $a=b+k m$.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \equiv_{m} b$.

Then, $m \mid(a-b)$ by definition of congruence.
So, $a-b=k m$ for some integer k by definition of divides.
Therefore, $a=b+k m$.

By the Division Theorem, we have $a=q m+(a \bmod m)$, where $0 \leq(a \bmod m)<m$.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \equiv_{m} b$.
Then, $m \mid(a-b)$ by definition of congruence. So, $a-b=k m$ for some integer k by definition of divides. Therefore, $a=b+k m$.

By the Division Theorem, we have $a=q m+(a \bmod m)$, where $0 \leq(a \bmod m)<m$.

Combining these, we have $q m+(a \bmod m)=a=b+k m$ or equiv., $\mathrm{b}=q m-k m+(a \bmod m)=(q-k) m+(a \bmod m)$. By the Division Theorem, we have $b \bmod m=a \bmod m$.

The mod m function vs the \equiv_{m} predicate

- What we have just shown
- The mod m function takes any $a \in \mathbb{Z}$ and maps it to a remainder $a \bmod m \in\{0,1, . ., m-1\}$.
- Imagine grouping together all integers that have the same value of the $\bmod m$ function
That is, the same remainder in $\{0,1, . ., m-1\}$.
- The \equiv_{m} predicate compares $a, b \in \mathbb{Z}$. It is true if and only if the mod m function has the same value on a and on b.
That is, a and b are in the same group.

Recall: Familiar Properties of "="

- If $a=b$ and $b=c$, then $a=c$.
- i.e., if $a=b=c$, then $a=c$
- If $a=b$ and $c=d$, then $a+c=b+d$.
- in particular, since $c=c$ is true, we can " $+c$ " to both sides
- If $a=b$ and $c=d$, then $a c=b d$.
- in particular, since $c=c$ is true, we can " $\times c$ " to both sides

These are the facts that allow us to use algebra to solve problems

Modular Arithmetic: Basic Property

Let \boldsymbol{m} be a positive integer.
If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{b} \equiv_{\boldsymbol{m}} \boldsymbol{c}$, then $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{c}$.

Modular Arithmetic: Basic Property

Let \boldsymbol{m} be a positive integer.
If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{b} \equiv_{\boldsymbol{m}} \boldsymbol{c}$, then $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{c}$.

Suppose that $a \equiv_{m} b$ and $b \equiv_{m} c$.

Modular Arithmetic: Basic Property

Let \boldsymbol{m} be a positive integer.
If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{b} \equiv_{\boldsymbol{m}} \boldsymbol{c}$, then $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{c}$.

Suppose that $a \equiv_{m} b$ and $b \equiv_{m} c$. Then, by the previous property, we have $a \bmod m=b \bmod m$ and $b \bmod m=c \bmod m$.

Putting these together, we have $a \bmod m=c \bmod m$, which says that $a \equiv_{m} c$, by the previous property.

Modular Arithmetic: Addition Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a}+\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b}+\boldsymbol{d}$.

Modular Arithmetic: Addition Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a}+\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b}+\boldsymbol{d}$.

Suppose that $a \equiv_{m} b$ and $c \equiv_{m} d$.

Modular Arithmetic: Addition Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a}+\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b}+\boldsymbol{d}$.

Suppose that $a \equiv_{m} b$ and $c \equiv_{m} d$. Unrolling the definitions, we can see that $a-b=k m$ and $c-d=j m$ for some $k, j \in \mathbb{Z}$.

Adding the equations together gives us
$(a+c)-(b+d)=m(k+j)$.

By the definition of congruence, we have $a+c \equiv_{m} b+d$.

Modular Arithmetic: Multiplication Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a c} \equiv_{\boldsymbol{m}} \boldsymbol{b d}$.

Modular Arithmetic: Multiplication Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a c} \equiv_{\boldsymbol{m}} \boldsymbol{b d}$.

Suppose that $a \equiv_{m} b$ and $c \equiv_{m} d$.

Modular Arithmetic: Multiplication Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a c} \equiv_{\boldsymbol{m}} \boldsymbol{b d}$.

Suppose that $a \equiv_{m} b$ and $c \equiv_{m} d$. Unrolling the definitions, we can see that $a-b=k m$ and $c-d=j m$ for some $k, j \in \mathbb{Z}$ or equivalently, $a=k m+b$ and $c=j m+d$.

Multiplying both together gives us $a c=(k m+b)(j m+d)=$ $k j m^{2}+k m d+b j m+b d$.

Modular Arithmetic: Multiplication Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a c} \equiv_{\boldsymbol{m}} \boldsymbol{b d}$.

Suppose that $a \equiv_{m} b$ and $c \equiv_{m} d$. Unrolling the definitions, we can see that $a-b=k m$ and $c-d=j m$ for some $k, j \in \mathbb{Z}$ or equivalently, $a=k m+b$ and $c=j m+d$.

Multiplying both together gives us $a c=(k m+b)(j m+d)=$ $k j m^{2}+k m d+b j m+b d$. Re-arranging, this becomes $a c-b d=m(k j m+k d+b j)$.

This says $a c \equiv_{m} b d$ by the definition of congruence.

Modular Arithmetic: Properties

$$
\text { If } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b} \text { and } \boldsymbol{b} \equiv_{\boldsymbol{m}} \boldsymbol{c} \text {, then } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{c} .
$$

$$
\text { If } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b} \text { and } \boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d} \text {, then } \boldsymbol{a}+\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b}+\boldsymbol{d} \text {. }
$$

Corollary: If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$, then $\boldsymbol{a}+\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b}+\boldsymbol{c}$.

If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a} \boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b d}$.
Corollary: If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$, then $\boldsymbol{a c} \equiv_{\boldsymbol{m}} \boldsymbol{b} \boldsymbol{c}$.

Modular Arithmetic: Properties

$$
\text { If } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b} \text { and } \boldsymbol{b} \equiv_{\boldsymbol{m}} \boldsymbol{c} \text {, then } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{c} \text {. }
$$

$$
\text { If } a \equiv_{m} b, \text { then } a+c \equiv_{m} b+c .
$$

If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$, then $\boldsymbol{a} \boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b} \boldsymbol{c}$.
" \equiv_{m} " allows us to solve problems in modular arithmetic, e.g.

- add / subtract numbers from both sides of equations
- chains of " \equiv_{m} " values shows first and last are " \equiv_{m} "
- substitute " \equiv_{m} " values in equations (not proven yet)

Example

Let \boldsymbol{n} be an integer. Prove that $\boldsymbol{n}^{2} \equiv_{4} \mathbf{0}$ or $\boldsymbol{n}^{2} \equiv_{4} 1$.

Let's start by looking a a small example:

$$
\begin{array}{lll}
0^{2}=0 & \Xi_{4} & 0 \\
1^{2}=1 & \Xi_{4} & 1 \\
2^{2}=4 & \Xi_{4} & 0 \\
3^{2}=9 & \Xi_{4} & 1 \\
4^{2}=16 & \Xi_{4} & 0
\end{array}
$$

Example

Let \boldsymbol{n} be an integer. Prove that $\boldsymbol{n}^{2} \equiv_{4} \mathbf{0}$ or $\boldsymbol{n}^{2} \equiv_{4} \mathbf{1}$.

Case 1 (n is even):
Let's start by looking a a small example:

$$
\begin{array}{lll}
0^{2}=0 & \Xi_{4} & 0 \\
1^{2}=1 & \Xi_{4} & 1 \\
2^{2}=4 & \Xi_{4} & 0 \\
3^{2}=9 & \Xi_{4} & 1 \\
4^{2}=16 & \Xi_{4} & 0
\end{array}
$$

It looks like

$$
\begin{aligned}
& n \equiv_{2} 0 \rightarrow n^{2} \equiv_{4} 0, \text { and } \\
& n \equiv_{2} 1 \rightarrow n^{2} \equiv_{4} 1 .
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer. Prove that $\boldsymbol{n}^{2} \equiv_{4} \mathbf{0}$ or $\boldsymbol{n}^{2} \equiv_{4} \mathbf{1}$.

Case 1 (n is even):
Suppose n is even.
Then, $n=2 k$ for some integer k.
So, $n^{2}=(2 k)^{2}=4 k^{2}=4 k^{2}+0$.
Let's start by looking a a small example:

$$
\begin{array}{lll}
0^{2}=0 & \Xi_{4} & 0 \\
1^{2}=1 & \Xi_{4} & 1 \\
2^{2}=4 & \Xi_{4} & 0 \\
3^{2}=9 & \Xi_{4} & 1 \\
4^{2}=16 & \Xi_{4} & 0
\end{array}
$$

So, by the definition of congruence,
we have $n^{2} \equiv{ }_{4} 0$.
It looks like

$$
\begin{aligned}
& n \equiv_{2} 0 \rightarrow n^{2} \equiv_{4} 0, \text { and } \\
& n \equiv_{2} 1 \rightarrow n^{2} \equiv_{4} 1 .
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer. Prove that $\boldsymbol{n}^{2} \equiv_{4} \mathbf{0}$ or $\boldsymbol{n}^{2} \equiv_{4} \mathbf{1}$.

Case 1 (n is even): Done.
Case 2 (n is odd):
Let's start by looking a a small example:

$$
\begin{array}{lll}
0^{2}=0 & \Xi_{4} & 0 \\
1^{2}=1 & \Xi_{4} & 1 \\
2^{2}=4 & \Xi_{4} & 0 \\
3^{2}=9 & \Xi_{4} & 1 \\
4^{2}=16 & \Xi_{4} & 0
\end{array}
$$

It looks like

$$
\begin{aligned}
& n \equiv_{2} 0 \rightarrow n^{2} \equiv_{4} 0, \text { and } \\
& n \equiv_{2} 1 \rightarrow n^{2} \equiv_{4} 1 .
\end{aligned}
$$

Example

Let \boldsymbol{n} be an integer. Prove that $\boldsymbol{n}^{2} \equiv_{4} \mathbf{0}$ or $\boldsymbol{n}^{2} \equiv_{4} \mathbf{1}$.

Case 1 (n is even): Done.
Let's start by looking a a small example:

$$
\begin{array}{lll}
0^{2}=0 & \Xi_{4} & 0 \\
1^{2}=1 & \Xi_{4} & 1 \\
2^{2}=4 & \Xi_{4} & 0 \\
3^{2}=9 & \Xi_{4} & 1
\end{array}
$$

Case 2 (n is odd):
Suppose n is odd.
Then, $n=2 k+1$ for some integer k.
So, $n^{2}=(2 k+1)^{2}$
$=4 k^{2}+4 k+1$
$=4\left(k^{2}+k\right)+1$.
So, by definition of congruence,
It looks like

$$
\begin{aligned}
& n \equiv_{2} 0 \rightarrow n^{2} \equiv_{4} 0, \text { and } \\
& n \equiv_{2} 1 \rightarrow n^{2} \equiv_{4} 1 .
\end{aligned}
$$

we have $n^{2} \equiv{ }_{4} 1$.

Result follows by proof by cases since n is either even or odd

