CSE 311: Foundations of Computing

Lecture 12: Modular Arithmetic and Applications
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Administrivia

 HWS3 solutions after class

* HW4 released on Saturday

* Remember to start early!

— most problems require a formal proof and then
a translation into an English proof

— English proofs going forward

* Never hear people say “I can write 64-bit
ARM assembly but not Java”



Last Class: Divisibility

Definition: “b divides a”

Fora € Z,b € Z with b # 0:
b|lae 3qg€Z (a=qgb)

-
Check Your Understanding. Which of the following are true?

51 25| 5 3|2

5] 1iff 1 =5k 25 | 5iff 5 =25k 5|]0iff0=5k 3]2iff2=3k

@ @ 0|5 2|3

1]|5iff5=1k 5| 25iff 25 = 5k O]5iff5=0k 2| 3iff3=2k




Recall: Elementary School Division

For a,b € Z with b > 0, we can divide b into a.

If b | a, then, by definition, we have a = gb for some q € Z.
The number g is called the quotient.

Dividing both sides by b, we can write this as
a —
b _ q

(We want to stick to integers, though, so we’ll write a = gb.)



Recall: Elementary School Division

For a,b € Z with b > 0, we can divide b into a.

If b } a, then we end up with a remainder r € 7Z with 0 < r < b.
Now,

i d of g h t + il
instead o D= q we have > = q >
Multiplying both sides by b gives us a=gqgb+r

(A bit nicer since it has no fractions.)



Recall: Elementary School Division

For a,b € Z with b > 0, we can divide b into a.

If b | a, then we have a = gb for some q € Z.
If b t a, then we have a = gb + r for some g, € Z with 0 <r <b.

In general, we have a = gb + r forsome q,r € Z with 0 < r < b,
where r = 0 iff b | a.



Division Theorem

Division Theorem

Fora,b € Z withb > 0
there exist unique integers g, rwith0 <r <b»b
such thata = gb + r.

\_

To put it another way, if we divide b into a, we get a
unique quotient | g = a div b
and non-negative remainder [r=amod b

Note: r=0 even if a <O0.
Not quite the same as a%d.




Division Theorem

Division Theorem

Fora,b € Z withb > 0
there exist unique integers g, rwith0 <r <b»b
such thata = gb + r.

\_

To put it another way, if we divide b into a, we get a
unique quotient | g = a div b
and non-negative remainder [r=amod b

pUbllc class Test2 { ----jGRASP exec: java Test2

public static void main(String args[]) { -1
int a = -5; . .
. ----JGRASP: operation complete.
int d = 2; -
System.out.println(a % d);
} Note: r =0 evenifa < 0.

Not quite the same as a%d.




Division Theorem

Division Theorem

Fora,b € Z withb > 0
there exist unique integers g, rwith0 <r <b»b
such thata = gb + r.

\_

g=adivb r=amodb

While div is more familiar, our focus is on mod:
* provides a bound on the size (0 < r < b)
 heed to connect that somehow to arithmetic...



Ordinary arithmetic

2+3=05

+3

32101 2 3 45 6 7




Arithmetic on a Clock

2+3=05

23=3-7+2

Ifa =qgb +r,thenr (=amodb) is
where you stop after taking a steps on the clock



Arithmetic, mod 7

(@a+ b)mod 7
(@ x b) mod 7

0 |0 (O

0

O J0 [0 |O




Modular Arithmetic

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0
a=,b o m|(a —b)

New notion of “sameness” that will help us
understand modular arithmetic



Modular Arithmetic

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0
a=,b o m|(a —b)

\_

The standard math notation is

a = b (mod m)

A chain of equivalences is written

a=b=c=d(modm)

Many students find this confusing,
so we will use =,,, instead.



Modular Arithmetic

\

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0

a=,b o m|(a —b)
- J

Check Your Understanding. What do each of these mean?
When are they true?

X=,0
This statement is the same as saying “x is even”; so, any x that is
even (including negative even numbers) will work.

1219
This statement is true. 19 - (-1) = 20 which is divisible by 5
y =72

This statement is true for yin{...,-12,-5, 2, 9, 16, ...}. In other
words, all y of the form 2+7k for k an integer.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, bifand only if amod m = b mod m.




Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a mod m = b mod m.

By the division theorem, a = mq + (a mod m) and
b = ms + (b mod m) for some integers g,s.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a mod m = b mod m.

By the division theorem, a = mq + (a mod m) and
b = ms + (b mod m) for some integers g,s.

Then,a-b = (mqg + (a mod m)) - (ms + (b mod m))
= m(q-s) + (a modm- b modm)
= m(q-s)sinceamodm = bmodm



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a mod m = b mod m.

By the division theorem, a = mq + (a mod m) and
b = ms + (b mod m) for some integers g,s.

Then,a-b = (mqg + (a mod m)) - (ms + (b mod m))
= m(q-s) + (a modm- b modm)
= m(q-s)sinceamodm = bmodm

Therefore, m | (a — b) andso a =,,, b.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a =,,, b.

Then, m | (a - b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a =,,, b.

Then, m | (a - b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.

By the Division Theorem, we have a = gm + (a mod m),
where 0 < (a mod m) < m.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a =,,, b.

Then, m | (a - b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.

By the Division Theorem, we have a = gm + (a mod m),
where 0 < (a mod m) < m.

Combining these, we have gm + (amodm) =a =b + km
orequiv, b=gm — km + (amodm) = (g — k)m + (a mod m).
By the Division Theorem, we have b mod m = a mod m.



The mod m function vs the =.,, predicate

* What we have just shown

— The mod m function takes any a € Z and maps
it to a remainder a mod m € {0,1,..,m — 1}.

— Imagine grouping together all integers that have
the same value of the mod m function

That is, the same remainder in {0,1,..,m — 1}.

— The =,,, predicate compares a,b € Z. ltis true
if and only if the mod m function has the same
value on a and on b.

That is, a and b are in the same group.



Recall: Familiar Properties of “="

e Ifa=bandb =c,then a = c.

- j.e.,ifa=b=c,thena=c

e fa=bandc=d,thena+c=b+d.

— in particular, since ¢ = c is true, we can “4 ¢” to both sides

e Ifa=bandc =d,then ac = bd.

— in particular, since ¢ = c is true, we can “Xc” to both sides

These are the facts that allow us to
use algebra to solve problems




Modular Arithmetic: Basic Property

Let m be a positive integer.
Ifa=,, band b =, c, then a =,, c.




Modular Arithmetic: Basic Property

Let m be a positive integer.
Ifa=,, band b =, c, then a =,, c.

Suppose thata =,,, band b =,,, c.



Modular Arithmetic: Basic Property

Let m be a positive integer.
Ifa=,, band b =, c, then a =,, c.

Suppose that a =,,, b and b =,,, c. Then, by the

previous property, we have a mod m = b mod m
and b mod m = ¢ mod m.

Putting these together, we have a mod m = ¢ mod m,
which says that a =,,, ¢, by the previous property.



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.




Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

Suppose thata =,,, band c =,,, d.



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

Suppose that a =,,, b and ¢ =,,, d. Unrolling the definitions, we
canseethata-b = kmandc-d = jmforsomek,j € Z.

Adding the equations together gives us
(a+c)- (b+d) = m(k+)).

By the definition of congruence, we havea + ¢ =,,, b + d.



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.




Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

Suppose thata =,,, band c =,,, d.



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

Suppose that a =,,, b and ¢ =,,, d. Unrolling the definitions, we
canseethata-b =kmandc-d = jmforsomek,j € Z or
equivalently, a = km + b and ¢ = jm + d.

Multiplying both together givesus ac = (km + b)(jm + d) =
kjm? + kmd + bjm + bd.



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

Suppose that a =,,, b and ¢ =,,, d. Unrolling the definitions, we
canseethata-b =kmandc-d = jmforsomek,j € Z or
equivalently, a = km + b and ¢ = jm + d.

Multiplying both together givesus ac = (km + b)(jm + d) =
kjm? + kmd + bjm + bd. Re-arranging, this becomes
ac -bd = m(kjm + kd + bj).

This says ac =,,, bd by the definition of congruence.



Modular Arithmetic: Properties

Corollary:

Corollary:

Ifa=,, band b =, c, then a =,, c.

fa=,bandc=,,d,thena+c=,, b +d.

Ifa=,,b,thena+c=,, b+c.

Ifa=,, bandc =, d, then ac =,,, bd.

If a =,,, b, then ac =,,, bc.




Modular Arithmetic: Properties

Ifa=,, band b =, c, then a =,, c.

Ifa=,,b,thena+c=,, b+c.

If a =,,, b, then ac =,,, bc.

“=,,” allows us to solve problems in modular arithmetic, e.g.
 add / subtract numbers from both sides of equations
* chains of “=,,,” values shows first and last are “=,,,”
* substitute “=,,,” values in equations (not proven yet)



Example

Let n be an integer. Prove that n? =4 0 or n? =4 1.

Let’s start by looking a a small example:

0°=0 =, O
12=1 =, 1
22=4 =, 0
32=9 =z, 1
42=16 =, O

o



Example

Let n be an integer. Prove that n? =4 0 or n? =4 1.

. Let’s start by looking a a small example:
Case 1 (nis even): Y g P

02=0 =, 0
12=1 =z 1
22=4 =, 0
32=9 =, 1
42=16 =, 0

o

It looks like
n=,0—n%=,0,and
n=s =9 1 — n2 =4 1



Example

Let n be an integer. Prove that n? =4 0 or n? =4 1.

. Let’s start by looking a a small example:
Case 1 (n is even): Y g P

. 02=0 =, 0
Suppose n is even. 12=1 =, 1
Then, n = 2k for some integer k. 2=4 =z, 0
SO nz = (Zk)z 4k2 4k2 + 0. 32=9 =, 1
So, by the definition of congruence, 42=16 =, 0

we have n? =, 0.
It looks like

n=,0—n%=,0,and
n—21_)n2=41



Example

Let n be an integer. Prove that n? =4 0 or n? =4 1.

. Let’s start by looking a a small example:
Case 1 (nis even): Done. y 8 P

02=0 =, 0
2 — =

Case 2 (nis odd): ;z:zll _ é
- =4

32=9 =, 1

42=16 =, 0

It looks like
n=,0—n%=,0,and
n E2 1 — n2 E4_ 1.



Example

Let n be an integer. Prove that n? =4 0 or n? =4 1.

. Let’s start by looking a a small example:
Case 1 (n is even): Done. y 8 P

0°=0 =, O
Case 2 (n is odd): 12 =1 51
Suppose n is odd. 22 i 4 ~4 0
Then, n = 2k + 1 for some integer k. 22 j 26 :4 é
So, n? = (2k + 1)? T
= 4k* + 4k + 1 It looks like
=4(k*+ k) + 1. n=,0— n2=,0,and
So, by definition of congruence, =,1->n%=,1

we have n? =, 1.

Result follows by proof by cases since n is either even or odd



