CSE 311: Foundations of Computing

Lecture 12: Modular Arithmetic and Applications

- HW3 solutions after class
- HW4 released on Saturday
- Remember to start early!
 - most problems require a formal proof and then a translation into an English proof
 - English proofs going forward
- Never hear people say "I can write 64-bit ARM assembly but not Java"

Last Class: Divisibility

Definition: "b divides a"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $b \neq 0$: $b \mid a \leftrightarrow \exists q \in \mathbb{Z} \ (a = qb)$

Check Your Understanding. Which of the following are true?

For $a, b \in \mathbb{Z}$ with b > 0, we can divide b into a.

If $b \mid a$, then, by definition, we have a = qb for some $q \in \mathbb{Z}$. The number q is called the quotient.

Dividing both sides by *b*, we can write this as

$$\frac{a}{b} = q$$

(We want to stick to integers, though, so we'll write a = qb.)

For $a, b \in \mathbb{Z}$ with b > 0, we can divide b into a.

If $b \nmid a$, then we end up with a *remainder* $r \in \mathbb{Z}$ with 0 < r < b. Now,

instead of
$$\frac{a}{b} = q$$
 we have $\frac{a}{b} = q + \frac{r}{b}$

Multiplying both sides by *b* gives us (A bit nicer since it has no fractions.)

a = qb + r

For $a, b \in \mathbb{Z}$ with b > 0, we can divide b into a.

If $b \mid a$, then we have a = qb for some $q \in \mathbb{Z}$. If $b \nmid a$, then we have a = qb + r for some $q, r \in \mathbb{Z}$ with 0 < r < b.

In general, we have a = qb + r for some $q, r \in \mathbb{Z}$ with $0 \le r < b$, where r = 0 iff $b \mid a$.

Division Theorem

For $a, b \in \mathbb{Z}$ with b > 0there exist *unique* integers q, r with $0 \le r < b$ such that a = qb + r.

To put it another way, if we divide *b* into *a*, we get a unique quotient $q = a \operatorname{div} b$ and non-negative remainder $r = a \operatorname{mod} b$

> Note: r ≥ 0 even if a < 0. Not quite the same as **a**%**d**.

Division Theorem

Division Theorem

For $a, b \in \mathbb{Z}$ with b > 0there exist *unique* integers q, r with $0 \le r < b$ such that a = qb + r.

To put it another way, if we divide *b* into *a*, we get a unique quotient $q = a \operatorname{div} b$ and non-negative remainder $r = a \operatorname{mod} b$

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
} Note: r ≥ 0 even if a < 0.
Not quite the same as a%d.</pre>
```

Division Theorem

Division Theorem

For $a, b \in \mathbb{Z}$ with b > 0there exist *unique* integers q, r with $0 \le r < b$ such that a = qb + r.

$$q = a \operatorname{div} b$$
 $r = a \operatorname{mod} b$

While **div** is more familiar, our focus is on **mod**:

- provides a bound on the size $(0 \le r < b)$
- need to connect that somehow to arithmetic...

2 + 3 = 5

Arithmetic on a Clock

If a = qb + r, then $r \ (= a \mod b)$ is where you stop after taking a steps on the clock

(a + b) mod 7 (a × b) mod 7

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Modular Arithmetic

Definition: "a is congruent to b modulo m"

b)

For
$$a, b, m \in \mathbb{Z}$$
 with $m > 0$
 $a \equiv_m b \leftrightarrow m \mid (a - b)$

New notion of "sameness" that will help us understand modular arithmetic

Modular Arithmetic

Definition: "a is congruent to b modulo m"

b)

For
$$a, b, m \in \mathbb{Z}$$
 with $m > 0$
 $a \equiv_m b \leftrightarrow m \mid (a - d)$

The standard math notation is

 $a \equiv b \pmod{m}$

A chain of equivalences is written

 $a \equiv b \equiv c \equiv d \pmod{m}$

Many students find this confusing, so we will use \equiv_m instead.

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0

 $a \equiv_m b \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

 $x \equiv_2 0$

This statement is the same as saying "x is even"; so, any x that is even (including negative even numbers) will work.

-1 ≡₅ 19

This statement is true. 19 - (-1) = 20 which is divisible by 5

y ≡₇ 2

This statement is true for y in $\{ ..., -12, -5, 2, 9, 16, ... \}$. In other words, all y of the form 2+7k for k an integer.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$.

By the division theorem, $a = mq + (a \mod m)$ and $b = ms + (b \mod m)$ for some integers q,s.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$.

By the division theorem, $a = mq + (a \mod m)$ and $b = ms + (b \mod m)$ for some integers q,s.

Then,
$$a - b = (mq + (a \mod m)) - (ms + (b \mod m))$$

= $m(q - s) + (a \mod m - b \mod m)$
= $m(q - s)$ since $a \mod m = b \mod m$

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$.

By the division theorem, $a = mq + (a \mod m)$ and $b = ms + (b \mod m)$ for some integers q,s.

Then,
$$a - b = (mq + (a \mod m)) - (ms + (b \mod m))$$

= $m(q - s) + (a \mod m - b \mod m)$
= $m(q - s)$ since $a \mod m = b \mod m$

Therefore, $m \mid (a - b)$ and so $a \equiv_m b$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv_m b$.

Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv_m b$.

Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

By the Division Theorem, we have $a = qm + (a \mod m)$, where $0 \le (a \mod m) < m$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv_m b$.

Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

By the Division Theorem, we have $a = qm + (a \mod m)$, where $0 \le (a \mod m) < m$.

Combining these, we have $qm + (a \mod m) = a = b + km$ or equiv., $b = qm - km + (a \mod m) = (q - k)m + (a \mod m)$. By the Division Theorem, we have $b \mod m = a \mod m$.

- What we have just shown
 - The mod *m* function takes any $a \in \mathbb{Z}$ and maps it to a remainder $a \mod m \in \{0, 1, ..., m 1\}$.
 - Imagine grouping together all integers that have the same value of the mod m function That is, the same remainder in $\{0,1,..,m-1\}$.
 - The \equiv_m predicate compares $a, b \in \mathbb{Z}$. It is true if and only if the mod m function has the same value on a and on b.

That is, *a* and *b* are in the same group.

Recall: Familiar Properties of "="

- If a = b and b = c, then a = c.
 - i.e., if a = b = c, then a = c
- If a = b and c = d, then a + c = b + d.
 - in particular, since c = c is true, we can "+ c" to both sides
- If a = b and c = d, then ac = bd.
 - in particular, since c = c is true, we can " $\times c$ " to both sides

These are the facts that allow us to use algebra to solve problems

Let *m* be a positive integer. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Let *m* be a positive integer. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Suppose that $a \equiv_m b$ and $b \equiv_m c$.

Let *m* be a positive integer. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Suppose that $a \equiv_m b$ and $b \equiv_m c$. Then, by the previous property, we have $a \mod m = b \mod m$ and $b \mod m = c \mod m$.

Putting these together, we have $a \mod m = c \mod m$, which says that $a \equiv_m c$, by the previous property.

Modular Arithmetic: Addition Property

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Modular Arithmetic: Addition Property

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$.

Modular Arithmetic: Addition Property

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$. Unrolling the definitions, we can see that a - b = km and c - d = jm for some $k, j \in \mathbb{Z}$.

Adding the equations together gives us (a + c) - (b + d) = m(k + j).

By the definition of congruence, we have $a + c \equiv_m b + d$.

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$.

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$. Unrolling the definitions, we can see that a - b = km and c - d = jm for some $k, j \in \mathbb{Z}$ or equivalently, a = km + b and c = jm + d.

Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + bjm + bd$.

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$. Unrolling the definitions, we can see that a - b = km and c - d = jm for some $k, j \in \mathbb{Z}$ or equivalently, a = km + b and c = jm + d.

Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + bjm + bd$. Re-arranging, this becomes ac - bd = m(kjm + kd + bj).

This says $ac \equiv_m bd$ by the definition of congruence.

If
$$a \equiv_m b$$
 and $b \equiv_m c$, then $a \equiv_m c$.

If
$$a \equiv_m b$$
 and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Corollary: If $a \equiv_m b$, then $a + c \equiv_m b + c$.

If
$$a \equiv_m b$$
 and $c \equiv_m d$, then $ac \equiv_m bd$.

Corollary: If $a \equiv_m b$, then $ac \equiv_m bc$.

If
$$a \equiv_m b$$
 and $b \equiv_m c$, then $a \equiv_m c$.

If
$$a \equiv_m b$$
, then $a + c \equiv_m b + c$.

If
$$a \equiv_m b$$
, then $ac \equiv_m bc$.

" \equiv_m " allows us to solve problems in modular arithmetic, e.g.

- add / subtract numbers from both sides of equations
- chains of " \equiv_m " values shows first and last are " \equiv_m "
- substitute " \equiv_m " values in equations (not proven yet)

Let *n* be an integer. Prove that $n^2 \equiv_4 0$ or $n^2 \equiv_4 1$.

Let's start by looking a a small example:

$0^2 = 0$	\equiv_4	0
1 ² = 1	≡₄	1
2 ² = 4	≡₄	0
3 ² = 9	\equiv_4	1
$4^2 = 16$	≣⊿	0

Let *n* be an integer. Prove that $n^2 \equiv_4 0$ or $n^2 \equiv_4 1$.

Case 1 (n is even):

Let's start by looking a a small example:

$0^2 = 0$	\equiv_4	0
$1^2 = 1$	\equiv_4	1
2 ² = 4	≡₄	0
$3^2 = 9$	\equiv_4	1
$4^2 = 16$	\equiv_4	0

It looks like

n ≡₂ 0 → n² ≡₄ 0, and n ≡₂ 1 → n² ≡₄ 1.

Let *n* be an integer. Prove that $n^2 \equiv_4 0$ or $n^2 \equiv_4 1$.

Case 1 (n is even):Let's start by looking a a small example:Suppose n is even. $0^2 = 0 \equiv_4 0$ Then, n = 2k for some integer k. $1^2 = 1 \equiv_4 1$ So, $n^2 = (2k)^2 = 4k^2 = 4k^2 + 0$. $2^2 = 4 \equiv_4 0$ So, by the definition of congruence, $4^2 = 16 \equiv_4 0$ we have $n^2 \equiv_4 0$.0

It looks like

 $\begin{array}{l} n \equiv_2 0 \longrightarrow n^2 \equiv_4 0, \text{ and} \\ n \equiv_2 1 \longrightarrow n^2 \equiv_4 1. \end{array}$

Let *n* be an integer. Prove that $n^2 \equiv_4 0$ or $n^2 \equiv_4 1$.

Case 1 (n is even): Done.

Case 2 (n is odd):

Let's start by looking a a small example:

$0^2 = 0$	\equiv_4	0
$1^2 = 1$	\equiv_4	1
2 ² = 4	\equiv_4	0
3 ² = 9	\equiv_4	1
$4^2 = 16$	\equiv_4	0

It looks like

n ≡₂ 0 → n² ≡₄ 0, and n ≡₂ 1 → n² ≡₄ 1.

Let *n* be an integer. Prove that $n^2 \equiv_4 0$ or $n^2 \equiv_4 1$.

```
Let's start by looking a a small example:
Case 1 (n is even): Done.
                                                           0^2 = 0 \equiv_4 0
                                                           1^2 = 1 \equiv_4 1
Case 2 (n is odd):
                                                           2^2 = 4 \equiv_4 0
    Suppose n is odd.
                                                           3^2 = 9 \equiv_4 1
     Then, n = 2k + 1 for some integer k.
                                                           4^2 = 16 \equiv_4 0
    So, n^2 = (2k + 1)^2
         =4k^{2}+4k+1
                                           It looks like
         =4(k^2+k)+1.
                                         n \equiv_2 0 \rightarrow n^2 \equiv_4 0, and
    So, by definition of congruence, n \equiv_2 1 \rightarrow n^2 \equiv_4 1.
    we have n^2 \equiv_4 1.
```

Result follows by proof by cases since n is either even or odd