CSE 311: Foundations of Computing

Lecture 10: Sets \& Number Theory

Last Time: Set Theory

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

$$
\begin{aligned}
& \text { Some simple examples } \\
& A=\{1\} \\
& B=\{1,3,2\} \\
& C=\{\square, 1\} \\
& D=\{\{17\}, 17\} \\
& E=\{1,2,7, \text { cat, dog, } \varnothing, \alpha\}
\end{aligned}
$$

Last Time: Operations on Sets

- Definition for U based on V

$$
A \cup B=\{x:(x \in A) \vee(x \in B)\}
$$

- Definition for \cap based on \wedge

$$
A \cap B=\{x:(x \in A) \wedge(x \in B)\}
$$

- Complement based on \neg

$$
\bar{A}=\{x: \neg(x \in A)\}
$$

De Morgan's Laws

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.

Since x was arbitrary, we have shown, by definition, that $(A \cup B)^{C}=A^{C} \cap B^{C}$.

Proof technique:
To show $\mathrm{C}=\mathrm{D}$ show
$x \in \mathrm{C} \rightarrow x \in \mathrm{D}$ and
$x \in \mathrm{D} \rightarrow x \in \mathrm{C}$

De Morgan's Laws

Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$

1. Let x be arbitrary
2.1. $x \in(A \cup B)^{C}$

Assumption

2.3. $x \in A^{C} \cap B^{C}$
2. $x \in(A \cup B)^{C} \rightarrow x \in A^{C} \cap B^{C}$
3.1. $x \in A^{C} \cap B^{C}$

Direct Proof
Assumption
3.3. $x \in(A \cup B)^{C}$
3. $x \in A^{C} \cap B^{C} \rightarrow x \in(A \cup B)^{C}$

Direct Proof
4. $\left(x \in(A \cup B)^{C} \rightarrow x \in A^{C} \cap B^{C}\right) \wedge\left(x \in A^{C} \cap B^{C} \rightarrow x \in(A \cup B)^{C}\right)$
5. $x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}$
6. $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$

Intro ^: 2, 3
Biconditional: 4
Intro \forall : 1-5

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$.

Thus, we have $x \in A^{C} \cap B^{C}$.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$.

Thus, we have $x \in A^{C} \cap B^{C}$.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by definition, that $\neg(x \in A \vee x \in B)$.

Thus, we have $x \in A^{C} \cap B^{C}$.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by definition, that $\neg(x \in A \vee x \in B)$.

Thus, $x \in A^{C}$ and $x \in B^{C}$, so we we have $x \in A^{C} \cap B^{C}$ by the definition of intersection.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by definition, that $\neg(x \in A \vee x \in B)$.

Thus, $\neg(x \in A)$ and $\neg(x \in B)$, so $x \in A^{C}$ and $x \in B^{C}$ by the definition of compliment, and we can see that $x \in A^{C} \cap B^{C}$ by the definition of intersection.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by definition, that $\neg(x \in A \vee x \in B)$, or equivalently $\neg(x \in A) \wedge \neg(x \in B)$ by De Morgan's law. Thus, we have $x \in A^{C}$ and $x \in B^{C}$ by the definition of compliment, and we can see that $x \in A^{C} \cap B^{C}$ by the definition of intersection.

Proof technique:
To show $\mathrm{C}=\mathrm{D}$ show
$x \in \mathrm{C} \rightarrow x \in \mathrm{D}$ and
$x \in \mathrm{D} \rightarrow x \in \mathrm{C}$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C} \ldots$. Then, $x \in A^{C} \cap B^{C}$.
Suppose $x \in A^{C} \cap B^{C}$. Then, by the definition of intersection, we have $x \in A^{C}$ and $x \in B^{C}$. That is, we have $\neg(x \in A) \wedge \neg(x \in B)$, which is equivalent to $\neg(x \in A \vee x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in(A \cup B)^{C}$, by the definition of complement.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
The stated biconditional holds since:

$x \in(A \cup B)^{C}$	$\equiv \neg(x \in A \cup B)$	Def of $-C$
	$\equiv \neg(x \in A \vee x \in B)$	Def of U
	$\equiv \neg(x \in A) \wedge \neg(x \in B)$	De Morgan
	$\equiv x \in A^{C} \wedge x \in B^{C}$	Def of $-C$
Chains of equivalences are often easier to read	$\equiv x \in A^{C} \cap B^{C}$	Def of \cap
like this rather than as English text	itrary, we have shown the sets are equal.	

Distributive Laws

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

It's Propositional Logic Again!

Meta-Theorem: Translate any Propositional Logic equivalence into " $=$ " relationship between sets by replacing U with \vee, \cap with \wedge, and ${ }^{C}$ with \neg.
"Proof": Let x be an arbitrary object.
The stated bi-condition holds since:
$x \in$ left side $\quad \equiv$ replace set ops with propositional logic
三 apply Propositional Logic equivalence
\equiv replace propositional logic with set ops
$\equiv x \in$ right side
Since x was arbitrary, we have shown the sets are equal. \square

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days $=\{M, W, F\}$ and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days)=?
$\mathcal{P}(\varnothing)=$?

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days $=\{M, W, F\}$ and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=\{\{M, W, F\},\{M, W\},\{M, F\},\{W, F\},\{M\},\{W\},\{F\}, \varnothing\}$
$\mathcal{P}(\varnothing)=$?

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- e.g., let Days $=\{M, W, F\}$ and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=\{\{M, W, F\},\{M, W\},\{M, F\},\{W, F\},\{M\},\{W\},\{F\}, \varnothing\}$
$\mathcal{P}(\varnothing)=\{\varnothing\} \neq \varnothing$

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$,
$(2, a),(2, b),(2, c)\}$.

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$,
$(2, a),(2, b),(2, c)\}$.
What is $A \times \emptyset ?$

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

$$
\text { If } \begin{array}{r}
A=\{1,2\}, B=\{a, b, c\}, \text { then } A \times B=\{(1, a),(1, b),(1, c), \\
\\
(2, a),(2, b),(2, c)\} .
\end{array}
$$

$\boldsymbol{A} \times \emptyset=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \boldsymbol{b} \in \emptyset\}=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \mathbf{F}\}=\varnothing$

Russell's Paradox

$$
S=\{x: x \notin x\}
$$

Suppose that $S \in S$...

Russell's Paradox

$S=\{x: x \notin x\}$

Suppose that $S \in S$. Then, by the definition of $S, S \notin S$, but that's a contradiction.

Suppose that $S \notin S$. Then, by the definition of $S, S \in S$, but that's a contradiction too.

This is reminiscent of the truth value of the statement "This statement is false."

Number Theory

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
- Cryptography
- Hashing
- Security
- Important toolkit

Modular Arithmetic

- Arithmetic over a finite domain
- Almost all computation is over a finite domain

I'm ALIVE!

```
public class Test {
    final static int SEC_IN_YEAR = 364*24*60*60*100;
    public static void main(String args[]) {
            System.out.println(
                "I will be alive for at least " +
                SEC_IN_YEAR * 101 + " seconds."
            );
    }
}
```


I'm ALIVE!

```
public class Test {
    final static int SEC_IN_YEAR = 364*24*60*60*100;
    public static void main(String args[]) {
            System.out.println(
                "I will be alive for at least " +
                SEC_IN_YEAR * 101 + " seconds."
            );
    }
}
```

```
----jGRASP exec: java Test
```

----jGRASP exec: java Test
I will be alive for at least -186619904 seconds.
I will be alive for at least -186619904 seconds.
----jGRASP: operation complete.

```
    ----jGRASP: operation complete.
```


Divisibility

Definition: "b divides a"

For $a, b \in \mathbb{Z}$ with $b \neq 0$:

$$
b \mid a \leftrightarrow \exists q \in \mathbb{Z}(a=q b)
$$

Check Your Understanding. Which of the following are true?

5|1
25 | 5
$5 \mid 0$
$3 \mid 2$

1 | 5
5|25
$0 \mid 5$
2 | 3

Divisibility

Definition: "b divides a"

For $a, b \in \mathbb{Z}$ with $b \neq 0$:

$$
b \mid a \leftrightarrow \exists q \in \mathbb{Z}(a=q b)
$$

Check Your Understanding. Which of the following are true?
$5 \mid 1$
$5 \mid 1$ iff $1=5 k$
$1 \mid 5$

1 | 5 iff $5=1 k$

25|5
25 | 5 iff $5=25 k$
$5 \frac{5 \mid 25}{5 \mid 25 \text { iff } 25=5 k}$
0|5iff $5=0 k$
$2 \mid 3$
2 | 3 iff 3 = 2k

Recall: Elementary School Division

For $a, b \in \mathbb{Z}$ with $b>0$, we can divide b into a.

If $b \mid a$, then, by definition, we have $a=q b$ for some $q \in \mathbb{Z}$. The number q is called the quotient.

Dividing both sides by a, we can write this as

$$
\frac{a}{b}=d
$$

(We want to stick to integers, though, so we'll write $a=q b$.)

Recall: Elementary School Division

For $a, b \in \mathbb{Z}$ with $b>0$, we can divide b into a.

If $b \nmid a$, then we end up with a remainder $r \in \mathbb{Z}$ with $0<r<b$. Now,
instead of $\quad \frac{a}{b}=q \quad$ we have $\quad \frac{a}{b}=q+\frac{r}{b}$

Multiplying both sides by a gives us

$$
a=q b+r
$$ (A bit nicer since it has no fractions.)

Recall: Elementary School Division

For $a, b \in \mathbb{Z}$ with $b>0$, we can divide b into a.

If $b \mid a$, then we have $a=q b$ for some $q \in \mathbb{Z}$.
If $b \nmid a$, then we have $a=q b+r$ for some $q, r \in \mathbb{Z}$ with $0<\mathrm{r}<\mathrm{b}$.

In general, we have $a=q b+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r<b$, where $r=0$ iff $b \mid a$.

Division Theorem

Division Theorem

For $a, b \in \mathbb{Z}$ with $b>0$
there exist unique integers q, r with $0 \leq r<b$ such that $a=q b+r$.

To put it another wav, if we divide b into a, we get a unique quotient $q=a \operatorname{div} b$ and non-negative remainder $r=a \bmod b$

Division Theorem

Division Theorem

For $a, b \in \mathbb{Z}$ with $b>0$
there exist unique integers q, r with $0 \leq r<b$ such that $a=q b+r$.

To put it another wav, if we divide b into a, we get a unique quotient $q=a \operatorname{div} b$ and non-negative remainder $r=a \bmod b$

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
}
```

Note: $\mathrm{r} \geq 0$ even if $\mathrm{a}<0$. Not quite the same as $a \% d$.

