CSE 311: Foundations of Computing

Lecture 10: Sets & Number Theory
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Last Time: Set Theory

Sets are collections of objects called elements.

Write a € B to say that a is an element of set B,
and a & B to say that it is not.

Some simple examples
A= {1}

B=1{1, 3, 2}

c={L1, 1}

D={{17}, 17}

E={1, 2, 7, cat, dog, I, a}




Last Time: Operations on Sets

 Definition for U based on V

AUB={x:(x€A)V(x €B)}

 Definition for N based on A

ANB={x:(x€A)AN(x €B)}

e Complement based on —

A={x:(x € A)}




De Morgan’s Laws

AUB=ANB

ANB=AUB



De Morgan’s Laws

Prove that (A U B)¢= A® n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Since x was arbitrary, we have shown, Proof technique:
by definition, that (A U B)¢= A n B¢,  ToshowC=Dshow

x e C—> xeDand
xeD-osxeC



De Morgan’s Laws

Formally, prove Vx (x € (AU B)¢ & x € A n BY)

1. Let x be arbitrary
21. x € (AU B)¢ Assumption

2.3. x € AN B¢
2.x € (AUB)‘—> x € A n B¢ Direct Proof
3.1. x € A°n B¢ Assumption

3.3. x€e (AuB)¢

3.x€A°NB>x e (AuB)¢ Direct Proof
4. (x€e (AUB) > x€eA°NBOYA(x€eA“NB‘>xe(AuB)®) Introan:2,3
5.x€ (AUB)¢ & x € A° n B¢ Biconditional: 4

6.Vx(x € (AUB)¢ & x € A N BY) Intro V: 1-5



De Morgan’s Laws

Prove that (A U B)¢= A® n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.
Suppose x € (AU B)C.

Thus, we have x € A¢ n B¢,



De Morgan’s Laws

Prove that (A U B)¢= A® n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B).

Thus, we have x € A¢ n B¢,



De Morgan’s Laws

Prove that (A U B)¢= A® n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by definition, that =(x € AV x € B).

Thus, we have x € A¢ n B¢,



De Morgan’s Laws

Prove that (A U B)¢= A® n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by definition, that =(x € AV x € B).

Thus, x € A and x € B¢, so we we have x € A® N B¢
by the definition of intersection.



De Morgan’s Laws

Prove that (A U B)¢= A® n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by definition, that =(x € AV x € B).

Thus, =(x € A) and =(x € B), sox € A® and x € B¢
by the definition of compliment, and we can see that

x € A® N B¢ by the definition of intersection.



De Morgan’s Laws

Prove that (A U B)¢= A® n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by definition of
complement, we have —(x € A U B). The latter says,
by definition, that =(x € AV x € B), or equivalently
—(x € A) A =(x € B) by De Morgan’s law. Thus, we
have x € A® and x € B¢ by the definition of
compliment, and we can see that x € A° N B¢ by the

definition of intersection. Proof technique:
To show C =D show
Xxe C—-xeDand
xeD-oxeC



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.
Suppose x € (AU B)¢.... Then, x € A* n BC.

Suppose x € A® N B¢. Then, by the definition of
intersection, we have x € A and x € B¢. That is, we
have —(x € A) A =(x € B), which is equivalent to
—(x € AV x € B) by De Morgan’s law. The last is
equivalent to =(x € A U B), by the definition of union,
so we have shown x € (4 U B)¢, by the definition of
complement.



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.
The stated biconditional holds since:

x €E(AUB) = —(x € AUB) Def of -¢
=—-(x€AVxE€EBRB) Def of U
=—(x € A)A—=(x € B) DeMorgan
=x €A Ax € B¢ Def of -¢

Chains of equivalences [EEESI=RYTogagy.Y Def of N

are often easier to read

like thEiS f?tr]etftft'a” 2itrary, we have shown the sets are equal. B
nglish tex




Distributive Laws

ANBUC)=ANB)UANC)
AUBNC)=(AUB)Nn(A UC(C)

Tenley



It's Propositional Logic Again!

Meta-Theorem: Translate any Propositional Logic

“_n

equivalence into “=” relationship between sets by
replacing U with V, N with A, and -¢ with —.

“Proof”: Let x be an arbitrary object.
The stated bi-condition holds since:
x € left side

replace set ops with propositional logic

apply Propositional Logic equivalence
= replace propositional logic with set ops
= x € right side

Since x was arbitrary, we have shown the sets are equal. B



Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:BC A}

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)=?

P(LD)=?



Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:BC A}

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)={{M, W, F}, {M, W}, {M, F}, {W, F}, {M}, {W3}, {F}, &}

P(LD)=?



Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:BC A}

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)={{M, W, F}, {M, W}, {M, F}, {W, F}, {M}, {W3}, {F}, &}

P(Q)={} # &



Cartesian Product

AXB ={(a,b):a€ A, b €EB}

R X R is the real plane. You’ve seen ordered pairs before.
These are just for arbitrary sets.
7. X 7. is “the set of all pairs of integers”

IfA={1,2},B={a, b, c}, then A X B ={(1,a), (1,b), (1,0),
(2,a), (2,b), (2,c)}.



Cartesian Product

AXB ={(a,b):a€ A,b€EB}

R X R is the real plane. You’ve seen ordered pairs before.
These are just for arbitrary sets.

7. X 7. is “the set of all pairs of integers”

IfA={1,2},B={a, b, c}, then A X B ={(1,a), (1,b), (1,0),
(2,a), (2,b), (2,c)}.

What is AX®?



Cartesian Product

AXB ={(a,b):a€ A,b€EB}

R X R is the real plane. You’ve seen ordered pairs before.
These are just for arbitrary sets.

7. X 7. is “the set of all pairs of integers”

IfA={1,2},B={a, b, c}, then A X B ={(1,a), (1,b), (1,0),
(2,a), (2,b), (2,c)}.

AXP={(a,b):a€ANDbeP}={(ab):acA NF} =0



Russell’s Paradox

S={x:x¢&x}

Suppose that S € S...



Russell’s Paradox

S={x:x¢&x}

Suppose that S € S. Then, by the definition of S5, S € S, but
that’s a contradiction.

Suppose that S € S. Then, by the definition of S, S € S, but
that’s a contradiction too.

This is reminiscent of the truth value of the statement “This
statement is false.”



Number Theory



Number Theory (and applications to computing)

 Branch of Mathematics with direct relevance to
computing

* Many significant applications
— Cryptography
— Hashing
— Security

* Important toolkit



Modular Arithmetic

 Arithmetic over a finite domain

 Almost all computation is over a finite domain



I’'m ALIVE!

public class Test {
final static int SEC_IN YEAR = 364*24*60*60*100;
public static void main(String args[]) {
System.out.println(
“I will be alive for at least ” +
SEC_IN YEAR * 101 + “ seconds.”

)5



I’'m ALIVE!

public class Test {
final static int SEC_IN YEAR = 364*24*60*60*100;
public static void main(String args[]) {
System.out.println(
“I will be alive for at least ” +
SEC_IN YEAR * 101 + “ seconds.”

)s

----JjGRASP exec: java Test
I will be alive for at least -186619904 seconds.

----jGRASP: operation complete.



Divisibility

Definition: “b divides a”

Fora,b € Z with b # 0:
b|lae 3qg€Z (a=qgb)

-
Check Your Understanding. Which of the following are true?

51 25 | 5 5|0 3|2

1|5 5| 25 0|5 2|3



Divisibility

Definition: “b divides a”

Fora,b € Z with b # 0:
b|lae 3qg€Z (a=qgb)

-
Check Your Understanding. Which of the following are true?

51 25| 5 3|2

5] 1iff 1 =5k 25 | 5iff 5 =25k 5|]0iff0=5k 3]2iff2=3k

@ @ 0|5 2|3

1]|5iff5=1k 5| 25iff 25 = 5k O]5iff5=0k 2| 3iff3=2k




Recall: Elementary School Division

For a,b € Z with b > 0, we can divide b into a.

If b | a, then, by definition, we have a = gb for some q € Z.
The number g is called the quotient.

Dividing both sides by a, we can write this as

2 4
> =

(We want to stick to integers, though, so we’ll write a = gb.)



Recall: Elementary School Division

For a,b € Z with b > 0, we can divide b into a.

If b } a, then we end up with a remainder r € 7Z with 0 < r < b.
Now,

i d of g h t_ + -
instead o D= q we have > = q >
Multiplying both sides by a gives us a=gqgb+r

(A bit nicer since it has no fractions.)



Recall: Elementary School Division

For a,b € Z with b > 0, we can divide b into a.

If b | a, then we have a = gb for some q € Z.
If b t a, then we have a = gb + r for some g, € Z with 0 <r <b.

In general, we have a = gb + r forsome q,r € Z with 0 < r < b,
where r = 0 iff b | a.



Division Theorem

Division Theorem

Fora,b € Z withb > 0
there exist unique integers g, rwith0 <r <b»b
such thata = gb + r.

\_

To put it another way, if we divide b into a, we get a
unique quotient | g = a div b
and non-negative remainder [r=amod b

Note: r=0 even if a <O0.
Not quite the same as a%d.




Division Theorem

Division Theorem

Fora,b € Z withb > 0
there exist unique integers g, rwith0 <r <b»b
such thata = gb + r.

\_

To put it another way, if we divide b into a, we get a
unique quotient | g = a div b
and non-negative remainder [r=amod b

pUbllc class Test2 { ----jGRASP exec: java Test2

public static void main(String args[]) { -1
int a = -5; . .
. ----JGRASP: operation complete.
int d = 2; -
System.out.println(a % d);
} Note: r =0 evenifa < 0.

Not quite the same as a%d.




