#### **CSE 311:** Foundations of Computing





Sets are collections of objects called elements.

Write  $a \in B$  to say that a is an element of set B, and  $a \notin B$  to say that it is not.

```
Some simple examples

A = \{1\}

B = \{1, 3, 2\}

C = \{\Box, 1\}

D = \{\{17\}, 17\}

E = \{1, 2, 7, cat, dog, \emptyset, \alpha\}
```

#### Last Time: Operations on Sets

Definition for U based on V

$$A \cup B = \{ x : (x \in A) \lor (x \in B) \}$$

• Definition for  $\cap$  based on  $\wedge$ 

$$A \cap B = \{ x : (x \in A) \land (x \in B) \}$$

- Complement based on  $\neg$ 

$$\overline{A} = \{ x : \neg (x \in A) \}$$

**De Morgan's Laws** 

# $\overline{A \cup B} = \overline{A} \cap \overline{B}$

# $\overline{A\cap B}=\bar{A}\cup\bar{B}$

**Proof:** Let x be an arbitrary object.

Since x was arbitrary, we have shown, by definition, that  $(A \cup B)^C = A^C \cap B^C$ .

Proof technique: To show C = D show  $x \in C \rightarrow x \in D$  and  $x \in D \rightarrow x \in C$ 

## Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

| 1. Let x be arbitrary                                                                                                     |                         |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------|
| <b>2.1.</b> $x \in (A \cup B)^C$                                                                                          | Assumption              |
|                                                                                                                           |                         |
| <b>2.3.</b> $x \in A^C \cap B^C$                                                                                          |                         |
| <b>2.</b> $x \in (A \cup B)^C \rightarrow x \in A^C \cap B^C$                                                             | Direct Proof            |
| <b>3.1.</b> $x \in A^C \cap B^C$                                                                                          | Assumption              |
|                                                                                                                           |                         |
| <b>3.3.</b> $x \in (A \cup B)^C$                                                                                          |                         |
| <b>3.</b> $x \in A^C \cap B^C \to x \in (A \cup B)^C$                                                                     | Direct Proof            |
| <b>4.</b> $(x \in (A \cup B)^C \rightarrow x \in A^C \cap B^C) \land (x \in A^C \cap B^C \rightarrow x \in (A \cup B)^C)$ | Intro ∧: 2, 3           |
| <b>5.</b> $x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C$                                                         | <b>Biconditional:</b> 4 |
| <b>6.</b> $\forall x (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$                                             | Intro ∀: 1-5            |

#### **De Morgan's Laws**

Prove that  $(A \cup B)^C = A^C \cap B^C$ Formally, prove  $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$ 

**Proof:** Let x be an arbitrary object. Suppose  $x \in (A \cup B)^C$ .

Thus, we have  $x \in A^C \cap B^C$ .

. . .

**Proof:** Let x be an arbitrary object.

Suppose  $x \in (A \cup B)^C$ . Then, by the definition of complement, we have  $\neg (x \in A \cup B)$ .

Thus, we have  $x \in A^C \cap B^C$ .

**Proof:** Let x be an arbitrary object.

Suppose  $x \in (A \cup B)^C$ . Then, by the definition of complement, we have  $\neg(x \in A \cup B)$ . The latter says, by definition, that  $\neg(x \in A \lor x \in B)$ .

Thus, we have  $x \in A^C \cap B^C$ .

**Proof:** Let x be an arbitrary object.

Suppose  $x \in (A \cup B)^C$ . Then, by the definition of complement, we have  $\neg(x \in A \cup B)$ . The latter says, by definition, that  $\neg(x \in A \lor x \in B)$ .

Thus,  $x \in A^C$  and  $x \in B^C$ , so we we have  $x \in A^C \cap B^C$  by the definition of intersection.

**Proof:** Let x be an arbitrary object.

Suppose  $x \in (A \cup B)^C$ . Then, by the definition of complement, we have  $\neg (x \in A \cup B)$ . The latter says, by definition, that  $\neg (x \in A \lor x \in B)$ .

Thus,  $\neg(x \in A)$  and  $\neg(x \in B)$ , so  $x \in A^C$  and  $x \in B^C$ by the definition of compliment, and we can see that  $x \in A^C \cap B^C$  by the definition of intersection. **Prove that**  $(A \cup B)^C = A^C \cap B^C$ 

Formally, prove  $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$ 

**Proof:** Let x be an arbitrary object.

Suppose  $x \in (A \cup B)^C$ . Then, by definition of complement, we have  $\neg (x \in A \cup B)$ . The latter says, by definition, that  $\neg (x \in A \lor x \in B)$ , or equivalently  $\neg (x \in A) \land \neg (x \in B)$  by De Morgan's law. Thus, we have  $x \in A^C$  and  $x \in B^C$  by the definition of compliment, and we can see that  $x \in A^C \cap B^C$  by the definition of intersection.

To show C = D show  $x \in C \rightarrow x \in D$  and  $x \in D \rightarrow x \in C$  Prove that  $(A \cup B)^C = A^C \cap B^C$ 

Formally, prove  $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$ 

**Proof:** Let x be an arbitrary object.

Suppose  $x \in (A \cup B)^C$ .... Then,  $x \in A^C \cap B^C$ . Suppose  $x \in A^C \cap B^C$ . Then, by the definition of intersection, we have  $x \in A^C$  and  $x \in B^C$ . That is, we have  $\neg(x \in A) \land \neg(x \in B)$ , which is equivalent to  $\neg(x \in A \lor x \in B)$  by De Morgan's law. The last is equivalent to  $\neg(x \in A \cup B)$ , by the definition of union, so we have shown  $x \in (A \cup B)^C$ , by the definition of complement.

**Proof:** Let x be an arbitrary object.

The stated biconditional holds since:

$$x \in (A \cup B)^{C} \equiv \neg (x \in A \cup B) \qquad \text{Def of } -^{C}$$
$$\equiv \neg (x \in A \lor x \in B) \qquad \text{Def of } \cup$$
$$\equiv \neg (x \in A) \land \neg (x \in B) \qquad \text{Def of } \cup$$
$$\equiv x \in A^{C} \land x \in B^{C} \qquad \text{Def of } -^{C}$$
$$\equiv x \in A^{C} \cap B^{C} \qquad \text{Def of } \cap$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$  $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ 



**Meta-Theorem**: Translate any Propositional Logic equivalence into "=" relationship between sets by replacing U with V,  $\cap$  with  $\Lambda$ , and  $\cdot^{C}$  with  $\neg$ .

"**Proof**": Let x be an arbitrary object.

The stated bi-condition holds since:

- $x \in \text{left side} \equiv \text{replace set ops with propositional logic}$ 
  - $\equiv$  apply Propositional Logic equivalence
  - $\equiv$  replace propositional logic with set ops

 $\equiv x \in right side$ 

Since x was arbitrary, we have shown the sets are equal. ■

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(\mathsf{Days})=?$ 

 $\mathcal{P}(\emptyset)$ =?

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(\mathsf{Days}) = \{\{\mathsf{M}, \mathsf{W}, \mathsf{F}\}, \{\mathsf{M}, \mathsf{W}\}, \{\mathsf{M}, \mathsf{F}\}, \{\mathsf{W}, \mathsf{F}\}, \{\mathsf{W}\}, \{\mathsf{W}\}, \{\mathsf{F}\}, \emptyset\}\}$ 

 $\mathcal{P}(\emptyset)$ =?

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(Days) = \{\{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset\}\}$ 

 $\mathcal{P}(\varnothing) = \{\emptyset\} \neq \emptyset$ 

#### **Cartesian Product**

$$A \times B = \{ (a, b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$  is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$  is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A  $\times$  B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

$$A \times B = \{ (a, b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$  is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$  is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A  $\times$  B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

What is  $A \times \emptyset$ ?

$$A \times B = \{ (a, b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$  is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$  is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A  $\times$  B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

 $A \times \emptyset = \{(a, b) : a \in A \land b \in \emptyset\} = \{(a, b) : a \in A \land F\} = \emptyset$ 

**Russell's Paradox** 

$$S = \{ x : x \notin x \}$$

Suppose that  $S \in S$ ...

$$S = \{ x : x \notin x \}$$

Suppose that  $S \in S$ . Then, by the definition of  $S, S \notin S$ , but that's a contradiction.

Suppose that  $S \notin S$ . Then, by the definition of  $S, S \in S$ , but that's a contradiction too.

This is reminiscent of the truth value of the statement "This statement is false."

# **Number Theory**

#### Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
  - Cryptography
  - Hashing
  - Security
- Important toolkit

- Arithmetic over a finite domain
- Almost all computation is over a finite domain

```
public class Test {
   final static int SEC IN YEAR = 364*24*60*60*100;
   public static void main(String args[]) {
       System.out.println(
          "I will be alive for at least " +
          SEC_IN_YEAR * 101 + " seconds."
       );
   }
}
         ----jGRASP exec: java Test
        I will be alive for at least -186619904 seconds.
          ----jGRASP: operation complete.
```

#### Divisibility

#### **Definition: "b divides a"**

For  $a, b \in \mathbb{Z}$  with  $b \neq 0$ :  $b \mid a \leftrightarrow \exists q \in \mathbb{Z} \ (a = qb)$ 

Check Your Understanding. Which of the following are true?

### Divisibility

#### Definition: "b divides a"

For  $a, b \in \mathbb{Z}$  with  $b \neq 0$ :  $b \mid a \leftrightarrow \exists q \in \mathbb{Z} \ (a = qb)$ 

Check Your Understanding. Which of the following are true?



For  $a, b \in \mathbb{Z}$  with b > 0, we can divide b into a.

If  $b \mid a$ , then, by definition, we have a = qb for some  $q \in \mathbb{Z}$ . The number q is called the quotient.

Dividing both sides by *a*, we can write this as

$$\frac{a}{b} = d$$

(We want to stick to integers, though, so we'll write a = qb.)

For  $a, b \in \mathbb{Z}$  with b > 0, we can divide b into a.

If  $b \nmid a$ , then we end up with a *remainder*  $r \in \mathbb{Z}$  with 0 < r < b. Now,

instead of 
$$\frac{a}{b} = q$$
 we have  $\frac{a}{b} = q + \frac{r}{b}$ 

Multiplying both sides by *a* gives us (A bit nicer since it has no fractions.)

a = qb + r

For  $a, b \in \mathbb{Z}$  with b > 0, we can divide b into a.

If  $b \mid a$ , then we have a = qb for some  $q \in \mathbb{Z}$ . If  $b \nmid a$ , then we have a = qb + r for some  $q, r \in \mathbb{Z}$  with 0 < r < b.

In general, we have a = qb + r for some  $q, r \in \mathbb{Z}$  with  $0 \le r < b$ , where r = 0 iff  $b \mid a$ .

#### **Division Theorem**

For  $a, b \in \mathbb{Z}$  with b > 0there exist *unique* integers q, r with  $0 \le r < b$ such that a = qb + r.

To put it another way, if we divide *b* into *a*, we get a unique quotient  $q = a \operatorname{div} b$ and non-negative remainder  $r = a \operatorname{mod} b$ 

> Note: r ≥ 0 even if a < 0. Not quite the same as **a**%**d**.

#### **Division Theorem**

#### **Division Theorem**

For  $a, b \in \mathbb{Z}$  with b > 0there exist *unique* integers q, r with  $0 \le r < b$ such that a = qb + r.

To put it another way, if we divide *b* into *a*, we get a unique quotient  $q = a \operatorname{div} b$ and non-negative remainder  $r = a \operatorname{mod} b$ 

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
} Note: r ≥ 0 even if a < 0.
Not quite the same as a%d.</pre>
```