
CSE 311: Foundations of Computing

Lecture 10: Sets & Number Theory



Last Time: Set Theory

Sets are collections of objects called elements. 

Write a ∈	B to say that a is an element of set B,
and a ∉	B to say that it is not.

Some simple examples
A = {1}
B = {1, 3, 2}
C = {☐, 1}
D = {{17}, 17}
E = {1, 2, 7, cat, dog, Æ, α}



Last Time: Operations on Sets

• Definition for ∪ based on ∨

• Definition for ∩ based on ∧

• Complement based on ¬

𝐴 ∪ 𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 }

𝐴 ∩ 𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 }

-𝐴 = 𝑥 ∶ ¬(𝑥 ∈ 𝐴)



De Morgan’s Laws



De Morgan’s Laws

Proof technique:
To show C = D show
x Î C ® x Î D and
x Î D ® x Î C

Prove that (𝐴 ∪ 𝐵)!= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.

Since x was arbitrary, we have shown, 
by definition, that (𝐴 ∪ 𝐵)!= 𝐴! ∩ 𝐵! .



De Morgan’s Laws

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	
1. Let x be arbitrary

2.1.  𝑥 ∈ 𝐴 ∪ 𝐵 ! Assumption
… 
2.3.  𝑥 ∈ 𝐴! ∩ 𝐵!

2. 𝑥 ∈ 𝐴 ∪ 𝐵 !® 𝑥 ∈ 𝐴! ∩ 𝐵! Direct Proof
3.1. 𝑥 ∈ 𝐴! ∩ 𝐵! Assumption
… 
3.3.  𝑥 ∈ 𝐴 ∪ 𝐵 !

3. 𝑥 ∈ 𝐴! ∩ 𝐵!® 𝑥 ∈ 𝐴 ∪ 𝐵 ! Direct Proof
4. 𝑥 ∈ 𝐴 ∪ 𝐵 !® 𝑥 ∈ 𝐴! ∩ 𝐵! Ù (𝑥 ∈ 𝐴! ∩ 𝐵!® 𝑥 ∈ 𝐴 ∪ 𝐵 !) Intro Ù: 2, 3
5. 𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵! Biconditional: 4
6. ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	 Intro ∀: 1-5



De Morgan’s Laws

Prove that (𝐴 ∪ 𝐵)!= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . 

…

Thus, we have 𝑥 ∈ 𝐴! ∩ 𝐵! .



De Morgan’s Laws

Prove that (𝐴 ∪ 𝐵)!= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵).

…

Thus, we have 𝑥 ∈ 𝐴! ∩ 𝐵! .



De Morgan’s Laws

Prove that (𝐴 ∪ 𝐵)!= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter says, 
by definition, that ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵).
…

Thus, we have 𝑥 ∈ 𝐴! ∩ 𝐵! .



De Morgan’s Laws

Prove that (𝐴 ∪ 𝐵)!= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter says, 
by definition, that ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵).
…
Thus, 𝑥 ∈ 𝐴! and 𝑥 ∈ 𝐵! , so we we have 𝑥 ∈ 𝐴! ∩ 𝐵!
by the definition of intersection.



De Morgan’s Laws

Prove that (𝐴 ∪ 𝐵)!= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter says, 
by definition, that ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵).
…
Thus, ¬(𝑥 ∈ 𝐴) and ¬(𝑥 ∈ 𝐵), so 𝑥 ∈ 𝐴! and 𝑥 ∈ 𝐵!
by the definition of compliment, and we can see that 
𝑥 ∈ 𝐴! ∩ 𝐵! by the definition of intersection.



De Morgan’s Laws

Proof technique:
To show C = D show
x Î C ® x Î D and
x Î D ® x Î C

Prove that (𝐴 ∪ 𝐵)!= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by definition of
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter says, 
by definition, that ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵), or equivalently 
¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵) by De Morgan’s law. Thus, we 
have 𝑥 ∈ 𝐴! and 𝑥 ∈ 𝐵! by the definition of 
compliment, and we can see that 𝑥 ∈ 𝐴! ∩ 𝐵! by the 
definition of intersection.



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 ! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! .... Then, 𝑥 ∈ 𝐴! ∩ 𝐵! .
Suppose 𝑥 ∈ 𝐴! ∩ 𝐵! . Then, by the definition of 
intersection, we have 𝑥 ∈ 𝐴! and 𝑥 ∈ 𝐵! . That is, we 
have ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵), which is equivalent to 
¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) by De Morgan’s law. The last is 
equivalent to ¬(𝑥 ∈ 𝐴 ∪ 𝐵), by the definition of union, 
so we have shown 𝑥 ∈ 𝐴 ∪ 𝐵 ! , by the definition of 
complement.



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 ! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
The stated biconditional holds since:
𝑥 ∈ 𝐴 ∪ 𝐵 ! ≡ ¬(𝑥 ∈ 𝐴 ∪ 𝐵) Def of -𝐶

≡ ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) Def of ∪
≡ ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵) De Morgan
≡ 𝑥 ∈ 𝐴! ∧ 𝑥 ∈ 𝐵! Def of -𝐶

≡ 𝑥 ∈ 𝐴! ∩ 𝐵! Def of ∩
Since x was arbitrary, we have shown the sets are equal.

Chains of equivalences 
are often easier to read 
like this rather than as 

English text



Distributive Laws

𝐴 ∩ 𝐵 ∪ 𝐶 = 𝐴 ∩ 𝐵 ∪ 𝐴 ∩ 𝐶
𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ 𝐴 ∪ 𝐶

C

A B

C

A B



It’s Propositional Logic Again!

Meta-Theorem: Translate any Propositional Logic 
equivalence into “=” relationship between sets by 
replacing ∪ with ∨, ∩ with ∧, and 3! with ¬.

“Proof”: Let x be an arbitrary object.
The stated bi-condition holds since:
𝑥 ∈ left side ≡ replace set ops with propositional logic

≡ apply Propositional Logic equivalence
≡ replace propositional logic with set ops
≡ 𝑥 ∈ right side

Since x was arbitrary, we have shown the sets are equal.



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

𝒫(Days)=?

𝒫(Æ)=?

𝒫 𝐴 = { 𝐵 ∶ 𝐵 ⊆ 𝐴 }



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

𝒫(Days)= 𝖬,𝖶, 𝖥 , 𝖬,𝖶 , 𝖬, 𝖥 , 𝖶, 𝖥 , 𝖬 , 𝖶 , 𝖥 ,Æ

𝒫(Æ)=?

𝒫 𝐴 = { 𝐵 ∶ 𝐵 ⊆ 𝐴 }



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

𝒫(Days)= 𝖬,𝖶, 𝖥 , 𝖬,𝖶 , 𝖬, 𝖥 , 𝖶, 𝖥 , 𝖬 , 𝖶 , 𝖥 ,Æ

𝒫(Æ)={Æ} ≠Æ

𝒫 𝐴 = { 𝐵 ∶ 𝐵 ⊆ 𝐴 }



Cartesian Product

𝐴×𝐵 = { 𝑎, 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 }

ℝ×ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ × ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.



Cartesian Product

𝐴×𝐵 = { 𝑎, 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 }

ℝ×ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ × ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

What is 𝑨×∅?



Cartesian Product

𝐴×𝐵 = { 𝑎, 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 }

ℝ×ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ × ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

𝑨×∅ ={(𝒂, 𝒃) ∶ 𝒂 ∈ 𝑨 ∧ 𝒃 ∈ ∅} = {(𝒂, 𝒃) ∶ 𝒂 ∈ 𝑨 ∧ 𝗙} = ∅



Russell’s Paradox

𝑆 = { 𝑥 ∶ 𝑥 ∉ 𝑥 }
Suppose that 𝑆 ∈ 𝑆…



Russell’s Paradox

𝑆 = { 𝑥 ∶ 𝑥 ∉ 𝑥 }
Suppose that 𝑆 ∈ 𝑆.  Then, by the definition of 𝑆, 𝑆 ∉ 𝑆, but 
that’s a contradiction.

Suppose that 𝑆 ∉ 𝑆.  Then, by the definition of 𝑆, 𝑆 ∈ 𝑆, but 
that’s a contradiction too.

This is reminiscent of the truth value of the statement “This 
statement is false.”



Number Theory



Number Theory (and applications to computing)

• Branch of Mathematics with direct relevance to 
computing

• Many significant applications
– Cryptography
– Hashing
– Security

• Important toolkit



Modular Arithmetic

• Arithmetic over a finite domain

• Almost all computation is over a finite domain



I’m ALIVE!

public class Test {
final static int SEC_IN_YEAR = 364*24*60*60*100;
public static void main(String args[]) {

System.out.println(
“I will be alive for at least ” +
SEC_IN_YEAR * 101 + “ seconds.”

);
}

}



I’m ALIVE!

public class Test {
final static int SEC_IN_YEAR = 364*24*60*60*100;
public static void main(String args[]) {

System.out.println(
“I will be alive for at least ” +
SEC_IN_YEAR * 101 + “ seconds.”

);
}

}

Prints : “I will be alive for at least -186619904 seconds.”



Divisibility

Check Your Understanding.  Which of the following are true?

5 |	1 25 | 5 5 | 0 3 |	2

1 | 5 5 | 25 0 | 5 2 | 3

For 𝑎, 𝑏 ∈ ℤ with 𝑏 ≠ 0:
𝑏 | 𝑎 ↔ ∃𝑞 ∈ ℤ (𝑎 = 𝑞𝑏)

Definition: “b divides a”



Check Your Understanding.  Which of the following are true?

5 |	1 25 | 5 5 | 0 3 |	2

1 | 5 5 | 25 0 | 5 2 | 3

Divisibility

5 | 1 iff 1 = 5k

1 | 5 iff 5 = 1k

25 | 5 iff 5 = 25k

5 | 25 iff 25 = 5k

5 | 0 iff 0 = 5k

0 | 5 iff 5 = 0k

3 | 2 iff 2 = 3k

2 | 3 iff 3 = 2k

For 𝑎, 𝑏 ∈ ℤ with 𝑏 ≠ 0:
𝑏 | 𝑎 ↔ ∃𝑞 ∈ ℤ (𝑎 = 𝑞𝑏)

Definition: “b divides a”



For 𝑎, 𝑏 ∈ ℤ with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏 | 𝑎, then, by definition, we have 𝑎 = 𝑞𝑏 for some 𝑞 ∈ ℤ.
The number 𝑞 is called the quotient.

Dividing both sides by 𝑎, we can write this as

𝑎
𝑏 = 𝑑

(We want to stick to integers, though, so we’ll write 𝑎 = 𝑞𝑏.)

Recall: Elementary School Division



For 𝑎, 𝑏 ∈ ℤ with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏 ∤ 𝑎, then we end up with a remainder 𝑟 ∈ ℤ with 0 < 𝑟 < 𝑏.
Now,

instead of we have 

Multiplying both sides by 𝑎 gives us  𝑎 = 𝑞𝑏 + 𝑟
(A bit nicer since it has no fractions.)

Recall: Elementary School Division

𝑎
𝑏 = 𝑞

𝑎
𝑏 = 𝑞 +

𝑟
𝑏



For 𝑎, 𝑏 ∈ ℤ with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏 | 𝑎, then we have 𝑎 = 𝑞𝑏 for some 𝑞 ∈ ℤ.
If 𝑏 ∤ 𝑎, then we have 𝑎 = 𝑞𝑏 + 𝑟 for some 𝑞, 𝑟 ∈ ℤ with 0 < r < b.

In general, we have 𝑎 = 𝑞𝑏 + 𝑟 for some 𝑞, 𝑟 ∈ ℤ with 0 ≤ 𝑟 < 𝑏,
where 𝑟 = 0 iff 𝑏 | 𝑎.

Recall: Elementary School Division



To put it another way, if we divide b into a, we get a 
unique quotient                                                                     
and non-negative remainder

Division Theorem

q = a div b

Note: r ≥ 0 even if a < 0.  
Not quite the same as  a%d.

For 𝑎, 𝑏 ∈ ℤ with 𝑏 > 0
there exist unique integers q, r with 0 ≤ 𝑟 < 𝑏
such that 𝑎 = 𝑞𝑏 + 𝑟.

Division Theorem

r = a mod b



To put it another way, if we divide b into a, we get a 
unique quotient                                                                     
and non-negative remainder

Division Theorem

q = a div b

Note: r ≥ 0 even if a < 0.  
Not quite the same as  a%d.

r = a mod b

public class Test2 {
public static void main(String args[]) {

int a = -5;
int d = 2;
System.out.println(a % d);

}
}

For 𝑎, 𝑏 ∈ ℤ with 𝑏 > 0
there exist unique integers q, r with 0 ≤ 𝑟 < 𝑏
such that 𝑎 = 𝑞𝑏 + 𝑟.

Division Theorem


