
CSE 311: Foundations of Computing

Lecture 9:  Proof Strategies & Set Theory



Last class: Rationality

Prove: “The product of two rationals is rational.”
OR “If x and y are rational, then xy is rational.”

Recall that unquantified variables (not constants) 
are implicitly for-all quantified.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions

"x "y ((Rational(x) ∧ Rational(y)) ® Rational(xy))



Last class: Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.
Then, x = a/b for some integers a, b, where b¹0, and
y = c/d for some integers c,d, where d¹0. 
Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). 
Since b and d are both non-zero, so is bd. Furthermore, 
ac and bd are integers. By definition, then, xy is rational.
Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Last class: Rationality

Prove: “If x and y are rational, then xy is rational.”

Proof: Let x and y be arbitrary rationals.
Suppose x and y are rational.
Then, x = a/b for some integers a, b, where b¹0, and
y = c/d for some integers c,d, where d¹0. 
Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). 
Since b and d are both non-zero, so is bd. Furthermore, 
ac and bd are integers. By definition, then, xy is rational.
Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Last class: English Proofs

• High-level language let us work more quickly
– should not be necessary to spill out every detail
– examples so far

skipping Intro ∧ and Elim ∧ (and hence, Commutativity and Associativity)
skipping Double Negation
not stating existence claims (immediately apply Elim $ to name the object)
not stating that the implication has been proven (“Suppose X... Thus, Y.” says it already)

– (list will grow over time)

• English proof is correct if the reader believes they 
could translate it into a formal proof
– the reader is the “compiler” for English proofs



Proof Strategies



Proof Strategies: Counterexamples

To prove ¬"x P(x), prove  ∃¬P(x) :
• Equivalent by De Morgan’s Law
• All we need to do that is find an 𝒙 where 𝑷(𝒙) is false
• This example is called a counterexample to "𝒙 𝑷(𝒙).

e.g. Prove “Not every prime number is odd”

Proof: 2 is a prime that is not odd — a counterexample 
to the claim that every prime number is odd.

An English proof does not need to cite De Morgan’s law.



Proof Strategies: Proof by Contrapositive

If we assume ¬q and derive ¬p, then we have proven  
¬q ® ¬p, which is equivalent to proving p ® q.

1.1. ¬𝒒 Assumption
...
1.3. ¬𝒑

1. ¬𝒒®¬𝒑 Direct Proof
2. 𝒑® 𝒒 Contrapositive: 1                       



Proof Strategies: Proof by Contrapositive

If we assume ¬q and derive ¬p, then we have proven  
¬q ® ¬p, which is equivalent to proving p ® q.

1.1. ¬𝒒 Assumption
...
1.3. ¬𝒑

1. ¬𝒒®¬𝒑 Direct Proof
2. 𝒑® 𝒒 Contrapositive: 1

We will prove the contrapositive.

Suppose ¬𝒒.
...
Thus, ¬𝒑.



Proof by Contradiction:  One way to prove ¬p

If we assume p and derive F (a contradiction), then 
we have proven ¬p.

1.1.  𝒑 Assumption
...
1.3.  𝗙

1.   𝒑® 𝗙 Direct Proof
2.   ¬𝒑 Ú 𝗙 Law of Implication: 1
3.   ¬𝒑 Identity: 2



Proof Strategies: Proof by Contradiction

If we assume p and derive F (a contradiction), then we 
have proven ¬p.

1.1.  𝒑 Assumption
...
1.3.  𝗙

1.   𝒑® 𝗙 Direct Proof
2.   ¬𝒑 Ú 𝗙 Law of Implication: 1
3.   ¬𝒑 Identity: 2

We will argue by contradiction.

Suppose 𝒑.
...
This is a contradiction.

Often, we will infer ¬R, where R is a prior fact.
Putting these together, we have R Ù ¬R º F



Even and Odd

Prove: “No integer is both even and odd.”
Formally, prove  ¬ $x (Even(x)ÙOdd(x)) 

Proof: We work by contradiction.
Suppose that x is an integer that is both even and odd. 
Then, x=2a for some integer a, and x=2b+1 for some 
integer b. This means 2a=x=2b+1 and hence 2a-2b=1 
and so a-b=½. But a-b is an integer while ½ is not, so 
they cannot be equal. This is a contradiction.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, we’ve shown Integer(½) Ù ¬Integer(½) º F.



Strategies

• Simple proof strategies already do a lot
– counter examples
– proof by contrapositive
– proof by contradiction

• Later we will cover a specific strategy that applies 
to loops and recursion (mathematical induction)



Applications of Predicate Logic

• Remainder of the course will use predicate logic to 
prove important properties of interesting objects
– start with math objects that are widely used in CS
– eventually more CS-specific objects

• Encode domain knowledge in predicate definitions
• Then apply predicate logic to infer useful results

Even(x) º $y (x = 2⋅y)
Odd(x) º $y (x = 2⋅y + 1)

Predicate Definitions
Integers

Domain of Discourse



Set Theory



Set Theory

Sets are collections of objects called elements. 

Write a ∈	B to say that a is an element of set B,
and a ∉	B to say that it is not.

Some simple examples
A = {1}
B = {1, 3, 2}
C = {☐, 1}
D = {{17}, 17}
E = {1, 2, 7, cat, dog, Æ, α}



Some Common Sets

ℕ is the set of Natural Numbers;ℕ = {0, 1, 2, …}
ℤ is the set of Integers; ℤ = {…, -2, -1, 0, 1, 2, …}
ℚ is the set of Rational Numbers; e.g. ½, -17, 32/48
ℝ is the set of Real Numbers; e.g. 1, -17, 32/48, π, 2
[n] is the set {1, 2, …, n} when n is a natural number
Æ = {} is the empty set; the only set with no elements



Sets can be elements of other sets

For example
A = {{1},{2},{1,2},Æ}
B = {1,2}

Then B ∈	A.



Definitions

• A and B are equal if they have the same elements

• A is a subset of B if every element of A is also in B

• Notes:

A = B := " x (x Î A « x Î B)

A Í B := " x (x Î A ® x Î B)

A ⊇ B means B ⊆ A A ⊂ B means A ⊆ B



Definition: Equality

A and B are equal if they have the same elements

A = B := " x (x Î A « x Î B)

A = {1, 2, 3}
B = {3, 4, 5}
C = {3, 4}
D = {4, 3, 3}
E = {3, 4, 3}
F = {4, {3}}

Which sets are equal to each other?



Definition: Subset

A is a subset of B if every element of A is also in B

A Í B := " x (x Î A ® x Î B)

A = {1, 2, 3}
B = {3, 4, 5}
C = {3, 4}

QUESTIONS
ÆÍ A?
A Í B?
C Í B?



Definition: Subset

A is a subset of B if every element of A is also in B

"xÎA (P(x))  := "x (x Î A ® P(x))

Note the domain restriction.

We will use a shorthand restriction to a subset

A Í B := " x (x Î A ® x Î B)



S = the set of all* x for which P(x) is true

S = the set of all x in A for which P(x) is true

Building Sets from Predicates

S = {x : P(x)}

S = {x Î A : P(x)}

*in the domain of P, usually called the “universe” U



Set Operations

𝐴 ∪ 𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 }

𝐴 ∩ 𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 }

𝐴 \ 𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵 }

Union

Intersection

Set Difference

A = {1, 2, 3}
B = {3, 5, 6} 
C = {3, 4}

QUESTIONS
Using A, B, C and set operations, make…
[6] =
{3} =
{1,2} =



More Set Operations

𝐴⊕𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ⊕ 𝑥 ∈ 𝐵 }

4𝐴 = 𝐴! = 𝑥 ∶ 𝑥 ∉ 𝐴
(with respect to universe U)                   

Symmetric
Difference

Complement

A = {1, 2, 3}
B = {1, 2, 4, 6} 
Universe:
U = {1, 2, 3, 4, 5, 6}

A⊕ B = {3, 4, 6}
$𝖠 = {4,5,6}



Set Complement



De Morgan’s Laws


