CSE 311: Foundations of Computing

Lecture 9: Proof Strategies & Set Theory
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“Yes, yes, I know that, Sidney ... everybody knows
that!...But look: Four wrongs squared, minus two
wrongs to the fourth power, divided by this
formula, do make a right.”



Domain of Discourse

Last class: Rationality " Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”
OR “If x and y are rational, then xy is rational.”

Recall that unquantified variables (nhot constants)
are implicitly for-all quantified.

Vx Vy ((Rational(x) A Rational(y)) — Rational(xy))




Domain of Discourse

Last class: Rationality " Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where b0, and
v = ¢/d for some integers c,d, where d=0.

Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd).
Since b and d are both non-zero, so is bd. Furthermore,
ac and bd are integers. By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the
product of any two rationals is rational. B




Domain of Discourse

Last class: Rationality " Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Proof: Letcand-ybearbitraryrationals-

Suppose x and y are rational.

Then, x = a/b for some integers a, b, where b0, and

v = ¢/d for some integers c,d, where d=0.

Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd).
Since b and d are both non-zero, so is bd. Furthermore,
ac and bd are integers. By definition, then, xy is rational.

—Since-xandy-were-arbitrary-we-have shownthat the-
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Last class: English Proofs

* High-level language let us work more quickly

— should not be necessary to spill out every detail
— examples so far

skipping Intro A and Elim A (and hence, Commutativity and Associativity)

skipping Double Negation

not stating existence claims (immediately apply Elim 3 to name the object)

not stating that the implication has been proven (“Suppose X... Thus, Y.” says it already)

— (list will grow over time)

* English proof is correct if the reader believes they
could translate it into a formal proof

— the reader is the “compiler” for English proofs



Proof Strategies



Proof Strategies: Counterexamples

To prove —Vx P(x), prove 3I—P(x):

* Equivalent by De Morgan’s Law
* All we need to do that is find an x where P(x) is false
* This example is called a counterexample to Vx P(x).

e.g. Prove “Not every prime number is odd”

Proof: 2 is a prime that is hot odd — a counterexample
to the claim that every prime number is odd. B

An English proof does not need to cite De Morgan’s law.



Proof Strategies: Proof by Contrapositive

If we assume —q and derive —p, then we have proven
—q — —p, which is equivalent to proving p — q.

1.1. —q Assumption

1.3.—p
1. —q—> —p Direct Proof
2. p—>q Contrapositive: 1



Proof Strategies: Proof by Contrapositive

If we assume —q and derive —p, then we have proven
—q — —p, which is equivalent to proving p — q.

We will prove the contrapositive.
Suppose —q. 1.1. —q Assumption
Thus, —p. 1.3.—p

1. —q—>—p Direct Proof
2. p—oq Contrapositive: 1



Proof by Contradiction: One way to prove —p

If we assume p and derive F (a contradiction), then
we have proven —p.

1.1. p  Assumption

1.3. F

1. p—F Direct Proof
2. —pVvF Law of Implication: 1

3. —p Ildentity: 2



Proof Strategies: Proof by Contradiction

If we assume p and derive F (a contradiction), then we
have proven —p.

We will argue by contradiction.

Suppose p. 1.1. p Assumption

This is a contradiction. 13. F _
1. p—>F Direct Proof
2. —pvF Law of Implication: 1
3. —p Identity: 2

Often, we will infer —R, where R is a prior fact.
Putting these together, we have RA —R=F



Predicate Definitions

Domain of Discourse

Even and Odd  |Even(x)=3y (x = 2y)

Odd(x) =dJy (X — Zy + 1) Integers

Prove: “No integer is both even and odd.”
Formally, prove — dx (Even(x)AOdd(x))

Proof: We work by contradiction.

Suppose that x is an integer that is both even and odd.
Then, x=2a for some integer a, and x=2b+1 for some
integer b. This means 2a=x=2b+1 and hence 2a-2b=1
and so a-b=).. But a-b is an integer while % is not, so
they cannot be equal. This is a contradiction. &

Formally, we’ve shown Integer(’:) A —Integer(}2) = F.




Strategies

* Simple proof strategies already do a lot
— counter examples
— proof by contrapositive
— proof by contradiction

* Later we will cover a specific strategy that applies
to loops and recursion (mathematical induction)



Applications of Predicate Logic

 Remainder of the course will use predicate logic to
prove important properties of interesting objects
— start with math objects that are widely used in CS
— eventually more CS-specific objects

 Encode domain knowledge in predicate definitions
* Then apply predicate logic to infer useful results

Domain of Discourse Predicate Definitions
Integers Even(x) =3y (x = 2-y)
pdd(x) =dy(x=2-y+1) )




Set Theory



Set Theory

Sets are collections of objects called elements.

Write a € B to say that a is an element of set B,
and a & B to say that it is not.

Some simple examples
A={1}

B=1{1,3, 2}

c ={[1, 1}

D={{17}, 17}

E={1, 2, 7, cat, dog, I, a}




Some Common Sets

N is the set of Natural Numbers; N =10, 1, 2, ...}

Z is the set of Integers; Z =1...,,-2,-1,0, 1, 2, ...}

Q is the set of Rational Numbers; e.g. %, -17, 32/48
R is the set of Real Numbers; e.g. 1, -17, 32/48, 1,\/2
[n] is the set {1, 2, ..., n} when n is a natural number
D = {}is the empty set; the only set with no elements




Sets can be elements of other sets

For example
A ={{1},{2},{1,2},S}
B=1{1,2}

Then B € A.




Definitions

A and B are equal if they have the same elements

A=B: =V x(xe A x eB)

 Ais asubset of B if every element of A is also in B

AcB:=Vx(xeA—xeB)

* Notes: (A=B) = (A< B) A(Bc A

A2BmeansBE A ACBmeansAS B



Definition: Equality

A and B are equal if they have the same elements

A=B:=Vx(xe A x eB)

A={1, 2, 3}
B=1{3, 4,5}
C=1{3, 4}
D=1{4,3, 3} Which sets are equal to each other?
E={3, 4,3}
F={4, {3}}




Definition: Subset

A is a subset of B if every element of A is also in B

AcB:=Vx(xeA—xeB)

A=1{1, 2, 3}
B=1{3,4,5}
C=1{3, 4}
QUESTIONS
D A?
AcB?

CcB?




Definition: Subset

A is a subset of B if every element of A is also in B

AcB:=Vx(xeA—xeB)

Note the domain restriction.

We will use a shorthand restriction to a subset

VxeA (P(x)) := Vx(x € A— P(x))



Building Sets from Predicates

S = the set of all” x for which P(x) is true

S ={x: P(x)}

S = the set of all x in A for which P(x) is true

S={x e A:P(x)}

*in the domain of P, usually called the “universe” U



Set Operations

AUB={x:(x€A)V(x €B)} Union

ANB={x:(x€A)A(x €B)} Intersection

A\B={x:(x€A)A(x & B)} | SetDifference

A=1{1, 2, 3} QUESTIONS
B=1{3,5, 6} Using A, B, C and set operations, make...
C=1{3,4} [6] =

{3} =
{1,2} =




More Set Operations

ADB={x:(x€A) D (x €B)}

Symmetric

A=A={x:x¢ A}

(with respect to universe U)

A={1, 2, 3}

B={1, 2, 4, 6}
Universe:

U={1, 2, 3, 4,5, 6}

A @ B={3, 4,6}
A={4,56)}

Difference

Complement



Set Complement

Erik Brynjolfsson &
@erikbryn

It's remarkable that as recently as 11 years ago, the
sum of all human knowledge could be provided in just
two books.

1:55 PM - Sep 10, 2021 MARK H. McCORMACK

What They

L DON’T
TWE'.II\I(\:.lI.-ITvgJ Teach You at
AT HARVARD Harvard
BUSINESS Business

SCHOOL School
2 ' 1] Notes from a
Street-Smart Executive

WITH A NEW FOREWORD BY ARIEL EMANUEL
AND PATRICK WHITESELL




De Morgan’s Laws

AUB=ANB

ANB=AUB



