CSE 311: Foundations of Computing

Lecture 9: English Proofs \& Proof Strategies

Last class: Inference Rules for Quantifiers

$\overbrace{\text { Intro } \exists} \frac{\mathrm{P}(\mathrm{c}) \text { for some } \mathrm{c}}{\therefore \quad \exists \mathrm{xP}(\mathrm{x})}$

$\therefore \mathrm{P}(\mathrm{c})$ for some special** c
${ }^{* *} \mathrm{C}$ is a NEW name.

These rules need some caveats...

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False
BAD "PROOF"

1. $\forall x \exists y(y \geq x)$ Given
2. Let a be an arbitrary integer
3. $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a}) \quad$ Elim $\forall: 1$
4. $\mathrm{b} \geq \mathrm{a} \quad \operatorname{Elim} \exists: 3$ (b)
5. $\forall x(b \geq x) \quad$ Intro $\forall: 2,4$
6. $\exists y \forall x(y \geq x) \quad$ Intro $\exists: 5$

These rules need some caveats...

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False
BAD "PROOF"

1. $\forall x \exists y(y \geq x)$ Given
2. Let a be an arbitrary integer
3. $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a}) \quad$ Elim $\forall: 1$
4. $\mathrm{b} \geq \mathrm{a} \quad \operatorname{Elim} \exists: 3$ (b)
5. $\exists \mathrm{y} \forall \mathrm{x}(\mathrm{y} \geq \mathrm{x}) \quad$ Intro $\exists: 5$

Can't get rid of a since another name in the same line, b, depends on it!

These rules need some caveats...

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False
BAD "PROOF"

1. $\forall x \exists y(y \geq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a}) \quad \operatorname{Elim} \forall: 1$
4. $\mathrm{b} \geq \mathrm{a} \quad \operatorname{Elim} \exists: 3$ (b)

Can't get rid of a since another name in the same line, b, depends on it!

Dependencies

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False
b depends on a since it appears inside the expression " $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a})$ "
(BAD "PROOF"

1. $\forall x \exists y(y \geq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a}) \quad \lim \forall: 1$
4. $b \geq a$

Elim \exists : 3 (b depends on a)

Intro \forall : 2,4
6. $\exists y \forall x(y \geq x) \quad$ Intro $\exists: 5$

Can't Intro \forall with "Let a be an arbitrary ... $\mathrm{P}(\mathrm{a})$ " because $\mathrm{P}(\mathrm{a})=$ " $\mathrm{b} \geq \mathrm{a}$ " uses object b , which depends on a !

Dependencies

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False
b depends on a since it appears inside the expression " $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a})$ "
(BAD "PROOF"

1. $\forall x \exists y(y \geq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a}) \quad \lim \forall: 1$
4. $b \geq a$

Elim \exists : 3 (b depends on a)
5. $\forall x(b \geq x) \quad$ Intro $\forall: 2,4$
6. $\exists y \forall x(y \geq x) \quad$ Intro $\exists: 5$

Have instead shown $\forall x(b(x) \geq x)$
where $b(x)$ is a number that is possibly different for each x

Formal Proofs

- In principle, formal proofs are the standard for what it means to be "proven" in mathematics
- almost all math (and theory CS) done in Predicate Logic
- But they are tedious and impractical
- e.g., applications of commutativity and associativity
- Russell \& Whitehead's formal proof that 1+1 = 2 is several hundred pages long we allowed ourselves to cite "Arithmetic", "Algebra", etc.
- Similar situation exists in programming...

Programming

$$
\begin{aligned}
& \mathrm{a}:=\operatorname{ADD}(\mathrm{i}, 1) \\
& \mathrm{b}:=\operatorname{MOD}(\mathrm{a}, \mathrm{n}) \\
& \mathrm{c}:=\operatorname{ADD}(\operatorname{arr}, \mathrm{b}) \\
& \mathrm{d}:=\operatorname{LOAD}(\mathrm{c}) \\
& \mathrm{e}:=\operatorname{ADD}(\operatorname{arr}, \mathrm{i}) \quad \\
& \text { STORE }(\mathrm{e}, \mathrm{~d}) \quad \operatorname{arr}[\mathrm{i}]=\operatorname{arr}[(\mathrm{i}+1) \% \mathrm{n}] ;
\end{aligned}
$$

Assembly Language
High-level Language

Programming vs Proofs

a :=ADD (i, 1)
$\mathrm{b}:=\operatorname{MOD}(\mathrm{a}, \mathrm{n})$
$\mathrm{c}:=\operatorname{ADD}(\mathrm{arr}, \mathrm{b})$
d:=LOAD(c)
e:=ADD(arr,i)
STORE (e, d)

Assembly Language
for Programs

Given
Given
Elim \wedge : 1
Double Negation: 4
Elim V: 3, 5
Modus Ponens: 2, 6

Assembly Language

for Proofs

Proofs

Given
Given
\wedge Elim: 1
Double Negation: 4
V Elim: 3, 5
MP: 2, 6

Assembly Language

 for Proofswhat is the "Java" for proofs?
for Proofs

Proofs

Given
Given
\wedge Elim: 1
Double Negation: 4

English?

V Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs

High-level Language

 for Proofs
Proofs

Given
Given
\wedge Elim: 1
Double Negation: 4
v Elim: 3, 5
MP: 2, 6

Assembly Language

 for Proofs
Math English

High-level Language

for Proofs

Proofs

- Formal proofs follow simple well-defined rules and should be easy for a machine to check
- as assembly language is easy for a machine to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
- also easy to check with practice
(almost all actual math and theory CS is done this way)
- English proof is correct if the reader believes they could translate it into a formal proof
(the reader is the "compiler" for English proofs)

Last class: Even and Odd

Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a) Assumption
$2.2 \exists y(a=2 y) \quad$ Definition of Even
$2.3 \mathrm{a}=2 \mathrm{~b} \quad$ Elim \exists : b special depends on a
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right) \quad$ Algebra
$2.5 \exists y\left(a^{2}=2 y\right) \quad$ Intro \exists rule
2.6 Even(a^{2}) Definition of Even
2. Even $(\mathrm{a}) \rightarrow$ Even $\left(\mathrm{a}^{2}\right) \quad$ Direct Proof
3. $\forall x\left(E v e n(x) \rightarrow E v e n\left(x^{2}\right)\right) \quad$ Intro $\forall: 1,2$

English Proof: Even and Odd

Prove "The square of every even integer is even."

Let a be an arbitrary integer.
Suppose a is even.
Then, by definition, $a=2 b$ for some integer b (dep on a).

Squaring both sides, we get $a^{2}=4 b^{2}=2\left(2 b^{2}\right)$.

So a^{2} is, by definition, even.

Since a was arbitrary, we have shown that the square of every even number is even.

1. Let a be an arbitrary integer
2.1 Even(a) Assumption
$2.2 \exists y(a=2 y) \quad$ Definition
2.3 a = 2b b special depends on \mathbf{a}
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right)$ Algebra
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even $\left(\mathrm{a}^{2}\right)$ Definition
2. Even $(a) \rightarrow \operatorname{Even}\left(a^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

English Proof: Even and Odd

$\operatorname{Even}(x) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$ Domain: Integers

Prove "The square of every even integer is even."

Proof: Let a be an arbitrary integer.

Suppose a is even. Then, by definition, $a=2 b$ for some integer b (depending on a). Squaring both sides, we get $a^{2}=4 b^{2}=2\left(2 b^{2}\right)$. So a^{2} is, by definition, is even.

Since a was arbitrary, we have shown that the square of every even number is even.

English Proof: Even and Odd

Prove "The square of every even integer is even."

Proof: Let a be an arbitrary even integer.
Then, by definition, $a=2 b$ for some integer b (dep on a). Squaring both sides, we get $a^{2}=4 b^{2}=2\left(2 b^{2}\right)$. So a^{2} is, by definition, is even.

Since a was arbitrary, we have shown that the square of every even number is even.

$$
\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)
$$

Predicate Definitions
 Even and Odd
 $\operatorname{Even}(\mathrm{x}) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

Even and Odd

Predicate Definitions
Even $(x) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

Let x and y be arbitrary integers.

Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer
3. $(\operatorname{Odd}(x) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(x+y)$
4. $\forall x \forall y((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathrm{y})) \rightarrow \operatorname{Even}(\mathrm{x}+\mathrm{y}))$ Intro \forall

Even and Odd

Predicate Definitions
$\operatorname{Even}(\mathrm{x}) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.
so $x+y$ is even.
Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer
3.1 $\operatorname{Odd}(\mathbf{x}) \wedge$ Odd $(\mathbf{y}) \quad$ Assumption
3.9 Even $(\mathbf{x}+\mathrm{y})$
3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y}) \quad$ DPR
4. $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(x+y))$ Intro \forall

Even and Odd

Predicate Definitions
$\operatorname{Even}(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3.1 $\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})$	Assumption
3.2 $\operatorname{Odd}(\mathbf{x})$	$\operatorname{Elim} \wedge: 2.1$
3.3 $\operatorname{Odd}(\mathbf{y})$	$\operatorname{Elim} \wedge: 2.1$

3.9 Even($\mathbf{x}+\mathrm{y}$)
3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y}) \quad$ DPR
4. $\forall x \forall y((O d d(x) \wedge O d d(y)) \rightarrow E v e n(x+y)) \operatorname{Intro} \forall$

English Proof: Even and Odd

$\operatorname{Even}(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$
Domain: Integers

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.

Suppose that both are odd.
Then, $x=2 a+1$ for some integer a (depending on x) and $y=2 b+1$ for some integer b (depending on y).
so $x+y$ is, by definition, even.
Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3.1	$\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})$	Assumption
3.2	$\operatorname{Odd}(\mathbf{x})$	Elim $\wedge: 2.1$
3.3	$\operatorname{Odd}(\mathbf{y})$	Elim $\wedge: 2.1$
3.4	$\exists \mathrm{z}(\mathbf{x}=2 \mathrm{z}+1)$	Def of Odd: 2.2
3.5	$\mathrm{x}=2 \mathrm{a}+1$	Elim $\exists: 2.4(\mathrm{a} \mathrm{dep} \mathrm{x})$
3.6	$\exists \mathrm{z}(\mathrm{y}=2 \mathrm{z}+1)$	Def of Odd: 2.3
3.7	$\mathrm{y}=2 \mathrm{~b}+1$	Elim $\exists: 2.5(\mathrm{~b}$ dep y$)$

3.9 $\exists z(x+y=2 z)$	Intro $\exists: 2.4$
3.10 Even $(x+y)$	Def of Even

3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y}) \quad$ DPR
4. $\forall \mathrm{x} \forall \mathrm{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathrm{y})) \rightarrow \operatorname{Even}(\mathrm{x}+\mathrm{y}))$ Intro \forall

English Proof: Even and Odd

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.

Suppose that both are odd.
Then, $x=2 a+1$ for some integer a (depending on x) and $y=2 b+1$ for some integer b (depending on y).
Their sum is $x+y=\ldots=2(a+b+1)$ so $x+y$ is, by definition, even.

Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3.1 $\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})$	Assumption
3.2 $\operatorname{Odd}(\mathrm{x})$	Elim \wedge : 2.1
3.3 $\operatorname{Odd}(\mathrm{y})$	Elim ^: 2.1
$3.4 \mathrm{zz}(\mathrm{x}=2 \mathrm{z}+1)$	Def of Odd: 2.2
$3.5 \mathrm{x}=2 \mathrm{a}+1$	Elim J : 2.4 (a dep x)
$3.6 \mathrm{gz}(\mathrm{y}=2 \mathrm{z}+1)$	Def of Odd: 2.3
$3.7 \mathrm{y}=2 \mathrm{~b}+1$	Elim $\mathrm{J}^{\text {2 }} 2.5$ (b dep y)
$3.8 \mathrm{x}+\mathrm{y}=2(\mathrm{a}+\mathrm{b}+1)$	Algebra
$3.9 \mathrm{gz}(\mathrm{x}+\mathrm{y}=2 \mathrm{z})$	Intro ヨ: 2.4
3.10 Even($\mathrm{x}+\mathrm{y}$)	Def of Even

3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y}) \quad$ DPR
4. $\forall \mathrm{x} \forall \mathrm{y}((\operatorname{Odd}(\mathrm{x}) \wedge \operatorname{Odd}(\mathrm{y})) \rightarrow \operatorname{Even}(\mathrm{x}+\mathrm{y}))$ Intro \forall

Even and Odd

Predicate Definitions
Even $(\mathrm{x}) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary integers.
Suppose that both are odd. Then, $x=2 a+1$ for some integer a (depending on x) and $y=2 b+1$ for some integer b (depending on $x)$. Their sum is $x+y=(2 a+1)+(2 b+1)=$ $2 a+2 b+2=2(a+b+1)$, so $x+y$ is, by definition, even.
Since x and y were arbitrary, the sum of any two odd integers is even. \quad

Even and Odd

Predicate Definitions
Even $(\mathrm{x}) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary odd integers.
Then, $x=2 a+1$ for some integer a (depending on x) and $y=2 b+1$ for some integer b (depending on x). Their sum is $x+y=(2 a+1)+(2 b+1)=2 a+2 b+2=2(a+b+1)$, so $x+y$ is, by definition, even.
Since x and y were arbitrary, the sum of any two odd integers is even. \quad

$$
\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))
$$

Rational Numbers

- A real number x is rational iff there exist integers a and b with $\mathrm{b} \neq 0$ such that $\mathrm{x}=\mathrm{a} / \mathrm{b}$.

Rational $(x):=\exists \mathrm{a} \exists \mathrm{b}(((\operatorname{Integer}(\mathrm{a}) \wedge \operatorname{Integer}(\mathrm{b})) \wedge(\mathrm{x}=\mathrm{a} / \mathrm{b})) \wedge \mathrm{b} \neq 0)$

Rationality

Predicate Definitions

Rational $(\mathrm{x}):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
Prove: "The product of two rationals is rational."
Formally, prove $\forall x \forall y$ ((Rational(x) \wedge Rational(y)) \rightarrow Rational(xy))

Rationality

Proof: Let x and y be arbitrary rationals.

Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Rationality

Predicate Definitions

Rational $(\mathrm{x}):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
Prove: "The product of two rationals is rational."
Proof: Let x and y be arbitrary rationals.
Then, $x=a / b$ for some integers a, b, where $b \neq 0$, and $y=c / d$ for some integers c, d, where $d \neq 0$.

Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Rationality

Real Numbers

Predicate Definitions

Rational $(\mathrm{x}):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
Prove: "The product of two rationals is rational."
Proof: Let x and y be arbitrary rationals.
Then, $x=a / b$ for some integers a, b, where $b \neq 0$, and $y=c / d$ for some integers c, d, where $d \neq 0$.
Multiplying, we get that $x y=(a / b)(c / d)=(a c) /(b d)$. Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, xy is rational. Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Rationality

Predicate Definitions

Rational $(\mathrm{x}):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
Prove: "The product of two rationals is rational."
OR "If x and y are rational, then $x y$ is rational."

Recall that unquantified variables (not constants) are implicitly for-all quantified.
$\forall \mathrm{x} \forall \mathrm{y}(($ Rational $(\mathrm{x}) \wedge$ Rational $(\mathrm{y})) \rightarrow$ Rational(xy$))$

Rationality

Real Numbers

Rationality

Predicate Definitions
 Rational(x) := ヨa $\exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

Suppose x and y are rational.

Then, $x=a / b$ for some integers a, b, where $b \neq 0$ and $y=c / d$ for some integers c, d, where $d \neq 0$.
1.1 $\operatorname{Rational}(x) \wedge \operatorname{Rational}(y)$ Assumption
$1.4 \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Def Rational: 1.2
$1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0)$ Elim \exists : 1.4
$1.6 \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Def Rational: 1.3
$1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)$
Elim \exists : 1.4

Rationality

Domain of Discourse

Real Numbers

Predicate Definitions
 Rational $(\mathrm{x}):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

Suppose x and y are rational.

Then, $x=a / b$ for some integers a, b, where $b \neq 0$ and $y=c / d$ for some integers c, d, where $d \neq 0$.
1.1 $\operatorname{Rational}(x) \wedge \operatorname{Rational}(y)$ Assumption
??
$1.4 \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Def Rational: 1.2
$1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0)$ Elim \exists : 1.4
$1.6 \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Def Rational: 1.3
$1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)$
Elim \exists : 1.4

Rationality

Domain of Discourse

 Real Numbers
Predicate Definitions
 Rational $(\mathrm{x}):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

Suppose x and y are rational.

Then, $x=a / b$ for some integers a, b, where $b \neq 0$ and $y=c / d$ for some integers c, d, where $d \neq 0$.
1.1 $\operatorname{Rational}(x) \wedge \operatorname{Rational}(y)$ Assumption
1.2 Rational $(x) \quad$ Elim \wedge : 1.1
1.3 Rational $(y) \quad E l i m \wedge: 1.1$
$1.4 \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Def Rational: 1.2
$1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0)$
Elim \exists : 1.4
$1.6 \exists p \exists q((x=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$
Def Rational: 1.3
$1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)$
Elim : 1.4

Rationality

Domain of Discourse

Real Numbers

Predicate Definitions
 Rational $(\mathrm{x}):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

$1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0)$
$1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)$

Multiplying, we get $x y=(a c) /(b d)$.
$1.10 x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d)$
Algebra

Rationality

Domain of Discourse

Real Numbers

Predicate Definitions
 Rational $(\mathrm{x}):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

$1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0)$
$1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)$
??

Multiplying, we get $x y=(a c) /(b d)$.
$1.10 x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d)$
Algebra

Rationality

Domain of Discourse

 Real Numbers
Predicate Definitions

Rational $(\mathrm{x}):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
Prove: "If x and y are rational, then $x y$ is rational."

Multiplying, we get $x y=(a c) /(b d)$.

$$
\begin{aligned}
& 1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0) \\
& 1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0) \\
& \begin{array}{lc}
1.8 x=a / b & \text { Elim } \wedge: 1.5 \\
1.9 y=c / d & \text { Elim } \wedge: 1.7 \\
1.10 x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d) \\
\text { Algebra }
\end{array}
\end{aligned}
$$

Rationality

Domain of Discourse

Predicate Definitions
 Rational $(\mathrm{x}):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

	$1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0)$	
\ldots	$1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)$	
	\ldots	
	$1.11 b \neq 0$	Elim $\wedge: 1.5 *$
Since b and d are non-zero, so is bd.	$1.12 d \neq 0$	Elim $\wedge: 1.7$
	$1.13 b d \neq 0$	Prop of Integer Mult

* Oops, I skipped steps here...

Rationality

Domain of Discourse

 Real Numbers
Predicate Definitions

Rational $(\mathrm{x}):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
Prove: "If x and y are rational, then $x y$ is rational."

$$
\begin{aligned}
& \text { 1.5 }(x=a / b) \wedge(\operatorname{Integer}(a) \wedge(\operatorname{Integer}(b) \wedge(b \neq 0))) \\
& \cdots \\
& \text { 1.7 }(y=c / d) \wedge(\operatorname{Integer}(c) \wedge(\operatorname{Integer}(d) \wedge(d \neq 0))) \\
& \text { 1.11 Integer }(a) \wedge(\operatorname{Integer}(b) \wedge(b \neq 0)) \\
& \text { 1.12 Integer }(b) \wedge(b \neq 0) \quad E \operatorname{Elim} \wedge: 1.5 \\
& \text { 1.13 } b \neq 0 \quad E \operatorname{Elim} \wedge: 1.11 \\
& \text { Elim } \wedge: 1.12
\end{aligned}
$$

We left out the parentheses...

Rationality

Domain of Discourse

 Real Numbers
Predicate Definitions
 Rational $(\mathrm{x}):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

$1.5(x=a / b) \wedge \operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(b \neq 0)$
$1.7(y=c / d) \wedge \operatorname{Integer}(c) \wedge \operatorname{Integer}(d) \wedge(d \neq 0)$
$1.13 b \neq 0$
$1.16 d \neq 0$
Since band d are non-zero, so is bd.
$1.17 b d \neq 0$

Elim \wedge : 1.5

Elim $\wedge: 1.7$
Prop of Integer Mult

Rationality

Domain of Discourse

 Real Numbers
Predicate Definitions
 Rational $(\mathrm{x}):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

Rationality

Domain of Discourse

 Real Numbers
Predicate Definitions

Rational $(x):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
Prove: "If x and y are rational, then $x y$ is rational."

$1.10 x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d)$	
\cdots	
1.17 bd $\neq 0$	Prop of Integer Mult
...	
1.28 Integer (ac)	Prop of Integer Mult
1.29 Integer(bd)	Prop of Integer M
1.30 Integer $(b d) \wedge(b d \neq 0)$) Intro $\wedge: 1.29,1.17$
1.31 Integer $(a c) \wedge$ Integer $(b d) \wedge(b d \neq 0)$	
	Intro \wedge : 1.28, 1.30
$1.32(x y=(a / b) /(c / d)) \wedge$ Integer $(a c) \wedge$	
Integer $(b d) \wedge(b d \neq 0)$	Intro ^: 1.10, 1.31
$1.33 \exists p \exists q((x y=p / q) \wedge \operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge(q \neq 0))$	
	Intro \exists : 1.32
1.34 Rational ($x y$)	Def of Rational: 1.32

Rationality

Predicate Definitions
 Rational $(\mathrm{x}):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

Suppose x and y are rational.	1.1 Rational $(x) \wedge$ Rational(y) Assumption	
	$1.10 x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d)$	
	1.17 bd , 0	
	1.17 bd $\neq 0$	Prop of Integer Mult
	...	
	1.28 Integer (ac)	Prop of Integer Mult
Furthermore, ac and bd are integers.	1.29 Integer $(b d)$	Prop of Integer Mult
By definition, then, xy is rational.	1.34 Rational ($x y$)	Def of Rational: 1.32

And finally...

Rationality

Predicate Definitions
 Rational $(\mathrm{x}):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
 Prove: "If x and y are rational, then $x y$ is rational."

Suppose that x and y are rational.
Furthermore, ac and bd are integers.

By definition, then, $x y$ is rational.
1.1 Rational $(x) \wedge \operatorname{Rational}(y)$ Assumption

1.10 $x y=(a / b)(c / d)=(a c / b d)=(a c) /(b d)$
\ldots
1.17 $b d \neq 0$
\ldots
1.28 Integer $(a c)$

1.29 Integer $(b d)$	Prop of Integer Mult
\cdots	Prop of Integer Mult
1.34 Rational $(x y)$	Def of Rational: 1.32

1. Rational $(x) \wedge \operatorname{Rational}(y) \rightarrow \operatorname{Rational}(x y)$ Direct Proof

Rationality

Real Numbers

Predicate Definitions

Rational $(\mathrm{x}):=\exists a \exists b(\operatorname{Integer}(a) \wedge \operatorname{Integer}(b) \wedge(x=a / b) \wedge(b \neq 0))$
Prove: "If x and y are rational, then $x y$ is rational."
Proof: Suppose x and y are rational.
Then, $x=a / b$ for some integers a, b, where $b \neq 0$, and $y=$ c / d for some integers c, d, where $d \neq 0$.
Multiplying, we get that $x y=(a c) /(b d)$. Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, xy is rational. \quad.

English Proofs

- High-level language let us work more quickly
- should not be necessary to spill out every detail
- reader checks that the writer is not skipping too much
- examples so far
skipping Intro \wedge and Elim \wedge
not stating existence claims (immediately apply Elim \exists to name the object)
not stating that the implication has been proven ("Suppose X... Thus, Y." says it already)
- (list will grow over time)
- English proof is correct if the reader believes they could translate it into a formal proof
- the reader is the "compiler" for English proofs

