CSE 311: Foundations of Computing

Lecture 8: Predicate Logic Proofs

Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Elim ∧
$$A \land B$$

∴ $A \land B$
∴ $A \land B$
∴ $A \land B$
∴ $A \land B$
∴ $A \lor B$; $\neg A$
∴ $A \lor B$, $B \lor A$
∴ $A \lor B$, $B \lor A$
Modus Ponens $A ; A \rightarrow B$
∴ B

Direct Proof Rule

∴ $A \rightarrow B$

Not like other rules

Last Class: To Prove An Implication: $A \rightarrow B$

 $A \Rightarrow B$

We use the direct proof rule

- $\therefore A \rightarrow B$
- The "pre-requisite" $A \Rightarrow B$ for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

To Prove An Implication: $A \rightarrow B$

 $A \Rightarrow B$

We use the direct proof rule

- $: A \to B$
- The "pre-requisite" $A \Rightarrow B$ for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

Example: Prove $p \rightarrow (p \lor q)$.

proof subroutine

Indent proof subroutine
$$\begin{array}{c}
1.1. \quad p \\
1.2. \quad p \lor q
\end{array}$$
Assumption Intro \lor : 1

1. $p \rightarrow (p \lor q)$

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

2.
$$(p \land q) \rightarrow r$$
 Given

This is a proof of
$$p \rightarrow r$$
 3.1. p Assumption 3.2. $p \land q$ Intro \land : 1, 3.1 MP: 2, 3.2

If we know p is true...
Then, we've shown
r is true

3.
$$p \rightarrow r$$
 Direct Proof Rule

Prove: $(p \land q) \rightarrow (p \lor q)$

-There MUST be an application of the Direct Proof Rule (or an equivalence) to prove this implication.

Where do we start? We have no givens...

Prove: $(p \land q) \rightarrow (p \lor q)$

Prove: $(p \land q) \rightarrow (p \lor q)$

1.1. $p \wedge q$

Assumption

1.? $p \vee q$

1. $(p \land q) \rightarrow (p \lor q)$

Prove: $(p \land q) \rightarrow (p \lor q)$

1.1. $p \wedge q$

1.2. *p*

1.? $p \vee q$

1. $(p \land q) \rightarrow (p \lor q)$

Assumption

Elim ∧: **1.1**

Prove: $(p \land q) \rightarrow (p \lor q)$

- 1.1. $p \wedge q$
- 1.2. *p*
- **1.3.** $p \vee q$
- **1.** $(p \land q) \rightarrow (p \lor q)$

Assumption

Elim ∧: **1.1**

Intro ∨: **1.2**

One General Proof Strategy

- 1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1.
$$(p \rightarrow q) \land (q \rightarrow r)$$
 Assumption

1.?
$$p \rightarrow r$$

1.
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$
 Direct Proof Rule

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1.
$$(p \rightarrow q) \land (q \rightarrow r)$$
 Assumption

1.2.
$$p \rightarrow q$$
 \wedge Elim: 1.1

1.3.
$$q \rightarrow r$$
 \wedge Elim: 1.1

1.?
$$p \rightarrow r$$

1.
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$
 Direct Proof Rule

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1. $(p \rightarrow q) \land (q \rightarrow r)$ Assumption

1.2. $p \rightarrow q$ \land Elim: 1.1

1.3. $q \rightarrow r$ \land Elim: 1.1

1.4.1. p Assumption

1.4.2. q MP: 1.2, 1.4.1

1.4.3. r MP: 1.3, 1.4.2

1.4. $p \rightarrow r$ Direct Proof Rule

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof Rule

Inference Rules for Quantifiers: First look

P(c) for some c
$$\exists x P(x)$$
 Elim $\forall x P(x)$ \therefore P(a) (for any a)

$$\exists x P(x)$$
∴ P(c) for some special** c

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW name!

P(c) for some c
$$\therefore \exists x P(x)$$

$$\forall x P(x)$$

$$\therefore P(a) \text{ for any } a$$

Prove
$$(\forall x P(x)) \rightarrow (\exists x P(x))$$

5. $(\forall x P(x)) \rightarrow (\exists x P(x))$? so Direct Property

The main connective is implication so Direct Proof Rule seems good

$$\begin{array}{c}
P(c) \text{ for some } c \\
\therefore \quad \exists x P(x)
\end{array}$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

$$1.5. \exists x P(x)$$

$$\begin{array}{c}
P(c) \text{ for some } c \\
\therefore \quad \exists x P(x)
\end{array}$$

$$\begin{array}{c}
\forall x \ P(x) \\
\therefore \ P(a) \text{ for any } a
\end{array}$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.5.
$$\exists x P(x)$$

That requires P(c) for some c.

1.
$$\forall x P(x) \rightarrow \exists x P(x)$$
 Direct Proof Rule

$$\begin{array}{c}
P(c) \text{ for some c} \\
\therefore \quad \exists x P(x)
\end{array}$$

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$

Assumption

1.2. Let α be an object.

1.5.
$$\exists x P(x)$$

Intro ∃: ?

$$\begin{array}{c}
P(c) \text{ for some c} \\
\therefore \quad \exists x P(x)
\end{array}$$

$$\forall x P(x)$$

$$\therefore P(a) \text{ for any } a$$

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$

Assumption

1.2. Let α be an object.

1.4.
$$P(a)$$

1.5. $\exists x P(x)$

<u>?</u> Intro ∃: 1.4

$$\begin{array}{c}
 P(c) \text{ for some } c \\
 \vdots \quad \exists x P(x)
\end{array}$$

1.1. $\forall x P(x)$ Assumption

1.2. Let α be an object.

1.4. P(a) Elim \forall : 1.1 1.5. $\exists x P(x)$ Intro \exists : 1.4

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$

Assumption

1.2. Let α be an object.

1.4. P(a)1.5. $\exists x P(x)$ **Elim** ∀: **1.1**

Intro ∃: **1.4**

$$\begin{array}{c}
P(c) \text{ for some c} \\
\therefore \quad \exists x P(x)
\end{array}$$

$$\begin{array}{c}
\forall x P(x) \\
\therefore P(a) \text{ for any } a
\end{array}$$

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$ Assumption

1.2. Let α be an object.

1.3. P(a) Elim \forall : **1.1**

1.4. $\exists x P(x)$ Intro \exists : **1.3**

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof Rule

Working forwards as well as backwards:

In applying "Intro \exists " rule we didn't know what expression we might be able to prove P(c) for, so we worked forwards to figure out what might work.

Predicate Logic Proofs

- Can use
 - Predicate logic inference rules whole formulas only
 - Predicate logic equivalences (De Morgan's)
 even on subformulas
 - Propositional logic inference rules whole formulas only
 - Propositional logic equivalences
 even on subformulas

Predicate Logic Proofs with more content

- In propositional logic we could just write down other propositional logic statements as "givens"
- Here, we also want to be able to use domain knowledge so proofs are about something specific
- Example: Domain of Discourse Integers
- Given the basic properties of arithmetic on integers, define:

 Predicate Definitions

Even(x) :=
$$\exists y (x = 2 \cdot y)$$

Odd(x) := $\exists y (x = 2 \cdot y + 1)$

A Not so Odd Example

Domain of Discourse Integers

Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$

 $Odd(x) := \exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x \; Even(x)$

A Not so Odd Example

Domain of Discourse

Integers

Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$

 $Odd(x) := \exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x \; Even(x)$

- 1. 2 = 2.1 Algebra
- **2.** $\exists y (2 = 2 \cdot y)$ Intro $\exists : 1$
- 3. Even(2) Definition of Even: 2
- 4. $\exists x \text{ Even}(x)$ Intro $\exists : 3$

A Prime Example

Domain of Discourse Integers

Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$

 $Odd(x) := \exists y (x = 2 \cdot y + 1)$

Prime(x) := "x > 1 and $x \ne a \cdot b$ for

all integers a, b with 1<a<x"

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

A Prime Example

Domain of Discourse

Integers

Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$

 $Odd(x) := \exists y (x = 2 \cdot y + 1)$

Prime(x) := "x > 1 and $x \ne a \cdot b$ for

all integers a, b with 1<a<x"

Algebra

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

1. 2 = 2.1

2. $\exists y (2 = 2 \cdot y)$ Intro $\exists : 1$

3. Even(2) Def of Even: 3

4. Prime(2)* Property of integers

5. Even(2) \wedge Prime(2) Intro \wedge : 2, 4

6. $\exists x (Even(x) \land Prime(x))$ Intro $\exists : 5$

^{*} Later we will further break down "Prime" using quantifiers to prove statements like this

Inference Rules for Quantifiers: First look

P(c) for some c
$$\therefore \exists x P(x)$$

Elim
$$\forall$$
 \forall $X P(x)$

$$\therefore P(a) \text{ (for any a)}$$

$$\exists x P(x)$$
∴ P(c) for some special** c

Let a be arbitrary*"...P(a)

∴ $\forall x P(x)$

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW name!

* in the domain of P

Even(x) := $\exists y \ (x=2y)$ Odd(x) := $\exists y \ (x=2y+1)$

Domain: Integers

Prove: "The square of any even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

3. $\forall x (Even(x) \rightarrow Even(x^2))$

Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$

Domain: Integers

Prove: "The square of any even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

- 2. Even(a) \rightarrow Even(a²)
- 3. $\forall x (Even(x) \rightarrow Even(x^2))$

Intro ∀: 1,2

Even(x) := $\exists y (x=2y)$

 $Odd(x) := \exists y (x=2y+1)$

Domain: Integers

Prove: "The square of any even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

2.1 Even(**a**)

Assumption

- 2. Even(a) \rightarrow Even(a²)
- 3. $\forall x (Even(x) \rightarrow Even(x^2))$ Intro $\forall : 1,2$

Direct proof rule

Even(x) := $\exists y (x=2y)$

Odd(x) := $\exists y (x=2y+1)$

Domain: Integers

Prove: "The square of any even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

2.1 Even(a)

Assumption

2.2 $\exists y (a = 2y)$

Definition of Even

2.5
$$\exists y (a^2 = 2y)$$

?

2.6 Even(**a**²)

Definition of Even

2. Even(a) \rightarrow Even(a²)

Direct proof rule

3. $\forall x (Even(x) \rightarrow Even(x^2))$

Intro ∀: 1,2

Even(x) := $\exists y (x=2y)$

 $Odd(x) := \exists y (x=2y+1)$

Domain: Integers

Prove: "The square of any even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

2.1 Even(**a**)

Assumption

2.2 $\exists y (a = 2y)$ Definition of Even

2.5
$$\exists y (a^2 = 2y)$$

Intro∃rule: (?)

2.6 Even(a²)

Definition of Even

Direct proof rule

2. Even(a) \rightarrow Even(a²)

Intro \forall : 1,2

3. $\forall x (Even(x) \rightarrow Even(x^2))$

Even(x) := $\exists y (x=2y)$

 $Odd(x) := \exists y (x=2y+1)$

Domain: Integers

Prove: "The square of any even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

2.2
$$\exists y (a = 2y)$$
 Definition of Even

2.3
$$a = 2b$$
 Elim $\exists : b$

2.5
$$\exists y (a^2 = 2y)$$

2.5
$$\exists y (a^2 = 2y)$$
 Intro \exists rule: ? 2.6 Even(a^2) Definition of Even

Intro \forall : 1,2

$$n(a) \rightarrow Even(a^2)$$
 Direct proof rule

2. Even(
$$\mathbf{a}$$
) \rightarrow Even(\mathbf{a}^2)

3.
$$\forall x \text{ (Even(x)} \rightarrow \text{Even(x}^2\text{))}$$

Need
$$a^2 = 2c$$
 for some c

Even(x) := $\exists y \ (x=2y)$ Odd(x) := $\exists y \ (x=2y+1)$ Domain: Integers

Used $a^2 = 2c$ for $c = 2b^2$

Prove: "The square of any even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

2.4
$$a^2 = 4b^2 = 2(2b^2)$$
 Algebra

2.5
$$\exists y (a^2 = 2y)$$
 Intro \exists rule

2. Even(a)
$$\rightarrow$$
Even(a²) Direct proof rule

3.
$$\forall x (Even(x) \rightarrow Even(x^2))$$
 Intro $\forall : 1,2$

These rules need more caveats...

There are extra conditions on using these rules:

"Let a be arbitrary"...P(a)

$$\therefore \forall x P(x)$$

* in the domain of P

Elim $\exists x P(x)$
 $\therefore P(c)$ for some special** c

** c has to be a NEW name.

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim $\exists : b$
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

These rules need more caveats...

There are extra conditions on using these rules:

"Let a be arbitrary*"...P(a)
$$\therefore \forall x \ P(x)$$

$$\vdots \ P(c) \ \text{for some } special** c$$

$$* \text{ in the domain of P}$$

$$** c \text{ has to be a NEW name.}$$

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim $\exists : b$
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

Can't get rid of a since another name in the same line, b, depends on it!

These rules need more caveats...

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim \exists : b special depends on a
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

Can't get rid of a since another name in the same line, b, depends on it!

Inference Rules for Quantifiers: Full version

P(c) for some c
$$\therefore \exists x P(x)$$

Elim
$$\forall$$
 \forall $x P(x)$

$$\therefore P(a) \text{ for any } a$$

$$∃x P(x)$$
∴ P(c) for some special** c

Let a be arbitrary*"...P(a)∴ ∀x P(x)

** c is a NEW name. List all dependencies for c. * in the domain of P. No other name in P depends on a

English Proofs

- We often write proofs in English rather than as fully formal proofs
 - They are more natural to read

- English proofs follow the structure of the corresponding formal proofs
 - Formal proof methods help to understand how proofs really work in English...
 - ... and give clues for how to produce them.