CSE 311: Foundations of Computing

Lecture 7: Logical Inference



Last Class: Quantifiers

We use *quantifiers* to talk about collections of objects.

$$\forall x P(x)$$

P(x) is true for every x in the domain read as "for all x, P of x"

$$\exists x P(x)$$

There is an x in the domain for which P(x) is true read as "there exists x, P of x"

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Remain true when domain restrictions are used:

$$\neg \exists x (P(x) \land R(x)) \equiv \forall x (P(x) \rightarrow \neg R(x))$$
$$\neg \forall x (P(x) \rightarrow R(x)) \equiv \exists x (P(x) \land \neg R(x))$$

Nested Quantifiers

Bound variable names don't matter

$$\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)$$

Positions of quantifiers can <u>sometimes</u> change

$$\forall x (Q(x) \land \exists y P(x, y)) \equiv \forall x \exists y (Q(x) \land P(x, y))$$

But: order is important...

Quantifier Order Can Matter

Domain of Discourse

{1, 2, 3, 4}

Predicate Definitions

GreaterEq(x, y) ::= " $x \ge y$ "

"There is a number greater than or equal to all numbers."

 $\exists x \ \forall y \ GreaterEq(x, y)))$

		<u> 1</u>	2	<u>3</u>	<u> 4</u>	
"	1	Т	F	F	F	
v	2	Т	Т	F	F	
X	2 3	Т	Т	Т	F	
	4	Т	Т	Т	Т	
•						

Quantifier Order Can Matter

Domain of Discourse {1, 2, 3, 4}

Predicate Definitions

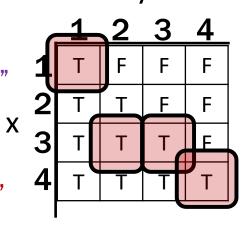
GreaterEq(x, y) ::= " $x \ge y$ "

"There is a number greater than or equal to all numbers."

 $\exists x \ \forall y \ GreaterEq(x, y)))$

"Every number has a number greater than or equal to it."

 $\forall y \exists x GreaterEq(x, y)))$



Quantifier Order Can Matter

Domain of Discourse

{1, 2, 3, 4}

Predicate Definitions

GreaterEq(x, y) ::= " $x \ge y$ "

"There is a number greater than or equal to all numbers."

 $\exists x \ \forall y \ GreaterEq(x, y)))$

"Every number has a number greater than or equal to it."

$$\forall$$
y \exists x GreaterEq(x, y)))

The purple statement requires an entire row to be true.

The red statement requires one entry in each column to be true.

Important: both include the case x = y

Different names does not imply different objects!

Quantification with Two Variables

	1	2	3	4
_	Т	F	F	F
2	Т	Т	F	F
3	Т	Т	Т	F
F	T	Т	Т	Т

		1
expression	when true	when false
$\forall x \forall y P(x, y)$	Every pair is true.	At least one pair is false.
∃ x ∃ y P(x, y)	At least one pair is true.	All pairs are false.
∀ x∃yP(x,y)	We can find a specific y for each x. $(x_1, y_1), (x_2, y_2), (x_3, y_3)$	Some x doesn't have a corresponding y.
∃ y ∀ x P(x, y)	We can find ONE y that works no matter what x is. $(x_1, y), (x_2, y), (x_3, y)$	For any candidate y, there is an x that it doesn't work for.

Logical Inference

- So far we've considered:
 - How to understand and express things using propositional and predicate logic
 - How to compute using Boolean (propositional) logic
 - How to show that different ways of expressing or computing them are equivalent to each other
- Logic also has methods that let us infer implied properties from ones that we know
 - Equivalence is a small part of this

Rather than comparing P and Q as columns, zooming in on just the rows where P is true:

р	q	Р	Q
Т	Т	Т	
Т	F	Т	
F	Т	F	
F	F	F	_

Rather than comparing P and Q as columns, zooming in on just the rows where P is true:

р	q	Р	Q
Т	Т	Т	Т
Т	F	Т	Т
F	T	F	
F	F	F	

Given that P is true, we see that Q is also true.

$$P \Rightarrow Q$$

Rather than comparing P and Q as columns, zooming in on just the rows where P is true:

р	q	Р	Q
Т	Т	Т	Т
T	F	Т	Т
F	Т	F	?
F	F	F	?

When we zoom out, what have we proven?

Rather than comparing P and Q as columns, zooming in on just the rows where P is true:

р	q	Р	Q	$P \rightarrow Q$
Т	Т	Т	Т	Т
Т	F	Т	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т

When we zoom out, what have we proven?

$$(P \rightarrow Q) \equiv T$$

Equivalences

$$P \equiv Q$$
 and $(P \leftrightarrow Q) \equiv T$ are the same

Inference

$$P \Rightarrow Q$$
 and $(P \rightarrow Q) \equiv T$ are the same

Can do the inference by zooming in to the rows where P is true

Applications of Logical Inference

Software Engineering

- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
 - Automated reasoning
- Algorithm design and analysis
 - e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

- Start with given facts (hypotheses)
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

An inference rule: *Modus Ponens*

- If A and A → B are both true, then B must be true
- Write this rule as
 A; A → B
 ∴ B
- Given:
 - If it is Wednesday, then you have a 311 class today.
 - It is Wednesday.
- Therefore, by Modus Ponens:
 - You have a 311 class today.

My First Proof!

Show that r follows from p, $p \rightarrow q$, and $q \rightarrow r$

```
Given
```

2.
$$p \rightarrow q$$
 Given 3. $q \rightarrow r$ Given

3.
$$q \rightarrow r$$
 Given

4.

5.

Modus Ponens
$$\xrightarrow{A ; A \rightarrow B}$$
 $\therefore B$

My First Proof!

Show that r follows from p, $p \rightarrow q$, and $q \rightarrow r$

```
Given
```

2.
$$p \rightarrow q$$
 Given

3.
$$q \rightarrow r$$
 Given

3.
$$q \rightarrow r$$
 Given
4. q MP: 1, 2

Modus Ponens
$$\xrightarrow{A ; A \rightarrow B}$$
 $\therefore B$

Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

```
1. p \rightarrow q Given
```

2.
$$\neg q$$
 Given

3.
$$\neg q \rightarrow \neg p$$
 Contrapositive: 1

4.
$$\neg p$$
 MP: 2, 3

Modus Ponens
$$\xrightarrow{A ; A \rightarrow B}$$
 $\therefore B$

Inference Rules

If A is true and B is true

Requirements: A; B

Conclusions: .. C , D

Then, C must

be true

Then D must

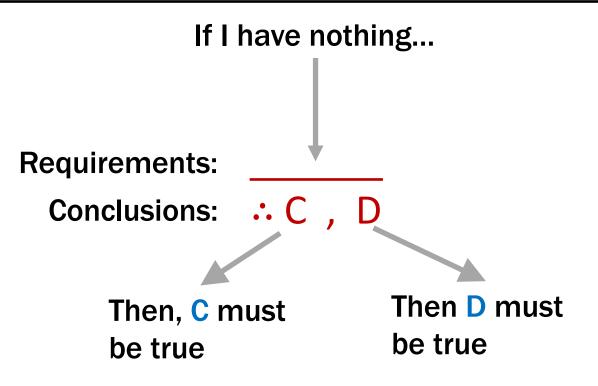
be true

Example (Modus Ponens):

 $\begin{array}{cccc} A & ; & A \rightarrow B \\ \therefore & B \end{array}$

If I have A and $A \rightarrow B$ both true, Then B must be true.

Axioms: Special inference rules



Example (Excluded Middle):

A V-A must be true.

Simple Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Elim
$$\land A \land B$$
 $\therefore A, B$
 $A \lor B; \neg A$
 $\therefore B$

Intro $\land A; B$
 $A \lor B; \neg A$
 $\therefore B$

Modus Ponens $A; A \rightarrow B$

Direct Proof $A \Rightarrow B$

Not like other rules

Show that r follows from p, p \rightarrow q and (p \land q) \rightarrow r

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

$$\frac{A ; A \rightarrow B}{:: B}$$

$$\frac{A \wedge B}{\therefore A, B}$$

Show that r follows from $p, p \rightarrow q$, and $p \land q \rightarrow r$

Two visuals of the same proof. We will use the top one, but if the bottom one helps you think about it, that's great!

2.
$$p \rightarrow q$$
 Given

4.
$$p \wedge q$$
 Intro \wedge : 1, 3

5.
$$p \land q \rightarrow r$$
 Given

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1. $p \wedge s$ Given

2. $q \rightarrow \neg r$ Given

3. $\neg s \lor q$ Given

First: Write down givens and goal

20. ¬*r*

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim →" which is MP.

20. $\neg r$

MP: 2,

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- Now, we have a new "hole"
- We need to prove q...
 - Notice that at this point, if we prove q, we've proven $\neg r$...

- **19.** *q*
- **20.** ¬*r*

?

MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

This looks like or-elimination.

19. *q*

20. ¬*r*

?

MP: 2, 19

A ∨ B ; ¬A ∴ B

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

18. $\neg \neg s$

¬¬s doesn't show up in the givens but s does and we can use equivalences

- 19. *q* ∨ Elim: 3, 18
- 20. ¬*r* MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given
- **17.** *s* ?
- **18.** ¬¬s Double Negation: **17**
- 19. *q* ∨ Elim: 3, 18
- 20. ¬*r* MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

No holes left! We just

need to clean up a bit.

\perp . $D \wedge S$ Given	1.	$\boldsymbol{v} \wedge \boldsymbol{s}$	Given
------------------------------	----	--	-------

2. $q \rightarrow \neg r$ Given

3. $\neg s \lor q$ Given

17. *s* ∧ Elim: **1**

18. ¬¬s Double Negation: 17

19. *q* ∨ Elim: 3, 18

20. ¬*r* MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given
- 4. *s* ∧ Elim: 1
- 5. ¬¬s Double Negation: 4
- 6. *q* ∨ Elim: 3, 5
- 7. $\neg r$ MP: 2, 6

Important: Applications of Inference Rules

 You can use equivalences to make substitutions of any sub-formula.

e.g.
$$(p \rightarrow r) \lor q \equiv (\neg p \lor r) \lor q$$

 Inference rules only can be applied to whole formulas (not correct otherwise).

e.g. 1.
$$p \rightarrow r$$
 given
2. $(p \lor q) \rightarrow r$ intro \lor from 1.

Does not follow! e.g. p=F, q=T, r=F

To Prove An Implication: $A \rightarrow B$

 $A \Rightarrow B$

We use the direct proof rule

- $\therefore A \rightarrow B$
- The "pre-requisite" $A \Rightarrow B$ for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

To Prove An Implication: $A \rightarrow B$

 $A \Rightarrow B$

We use the direct proof rule

- $: A \to B$
- The "pre-requisite" $A \Rightarrow B$ for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

Example: Prove $p \rightarrow (p \lor q)$.

proof subroutine

Indent proof subroutine
$$\begin{array}{c}
1.1. \quad p \\
1.2. \quad p \lor q
\end{array}$$
Assumption Intro \lor : 1

1. $p \rightarrow (p \lor q)$

Direct Proof Rule

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

2.
$$(p \land q) \rightarrow r$$
 Given

This is a proof of
$$p \rightarrow r$$
 3.1. p Assumption 3.2. $p \land q$ Intro \land : 1, 3.1 MP: 2, 3.2

If we know p is true...
Then, we've shown
r is true

3.
$$p \rightarrow r$$
 Direct Proof Rule

Example

Prove: $(p \land q) \rightarrow (p \lor q)$

-There MUST be an application of the Direct Proof Rule (or an equivalence) to prove this implication.

Where do we start? We have no givens...

Example

Prove: $(p \land q) \rightarrow (p \lor q)$

Example

Prove: $(p \land q) \rightarrow (p \lor q)$

1.1. $p \wedge q$

1.2. *p*

1.3. $p \vee q$

1. $(p \land q) \rightarrow (p \lor q)$

Assumption

Elim ∧: **1.1**

Intro ∨: **1.2**

Direct Proof Rule

One General Proof Strategy

- 1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.