CSE 311: Foundations of Computing

Lecture 6: Predicate Logic

THREE LOGICIANS WALK INTO A BAR...
DOES EVERYONE ||

WANT BEER?




Last class

Canonical Forms
— sum-of-products and product-of-sums
— both are useful

Corollaries of construction:
— any function can be formed with just —, v, A

— actually, just —, v (De Morgan’s laws)

— actually, just A (HW1 Q4)
NAND and NOR also have this property



Predicate Logic

* Propositional Logic

— Allows us to analyze complex propositions in
terms of their simpler constituent parts (a.k.a.
atomic propositions) joined by connectives

* Predicate Logic

— Lets us analyze them at a deeper level by
expressing how those propositions depend on
the objects they are talking about

”

“All positive integers x, y, and z satisfy x3 + y3 = z3.



Predicate Logic

Adds two key notions to propositional logic
— Predicates

— Quantifiers



Predicates

Predicate
— A function that returns a truth value, e.g.,

Cat(x) ::= “x is a cat”

Prime(x) ::= “x is prime”

HasTaken(x, y) ::= “student x has taken course y”
LessThan(x, y) ::= “x<y”

Sum(x, vy, z) :=“x+y=2"

GreaterThan5(x) ::= “x > 5”

HasNChars(s, n) ::= “string s has length n”

Predicates can have varying numbers of arguments
and input types.



Domain of Discourse

For ease of use, we define one “type”’/“domain” that we
work over. This non-empty set of objects is called the
“domain of discourse”.

For each of the following, what might the domain be?
(1) “x is a cat”, “x barks”, “x ruined my couch”

“mammals” or “sentient beings” or “cats and dogs” or ...
(2) “x is prime”, “x =07, “x< 07, “x is a power of two”
“numbers” or “integers” or “integers greater than 5” or ...

(3) “student x has taken course y” “x is a pre-req for 7’

“students and courses” or “university entities” or ...



Quantifiers

We use quantifiers to talk about collections of objects.

Vx P(x) I @ )

P(x) is true for every x in the domain QUANTIFIEF
read as “for all x, P of x”

Ix P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”



Statements with Quantifiers

Domain of Discourse
Positive Integers

Predicate Definitions

Even(x) ::= “x is even”  Greater(x, y) ::= “x>y”
Odd(x) ::= “x is odd” Equal(x, y) ::=“x=y”

\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y =2"

Determine the truth values of each of these statements:

dx Even(x)
Vx Odd(x)
Vx (Even(x) v Odd(x))
dx (Even(x) A Odd(x))

Vx Greater(x+1, x)

T eg246,..

F eg.24,6,..

T every integer is either even or odd
F nointegeris both even and odd

T adding 1 makes a bigger number

dx (Even(x) A Prime(x)) T  Even(2) is true and Prime(2) is true



Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even”  Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x=y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y =2"

Translate the following statements to English

Vx dy Greater(y, x)
For every positive integer x, there is a positive integer y, such thaty > x.
dy Vx Greater(y, x)

There is a positive integer y such that, for every pos. int. X, we have y > x.

Vx 3y (Greater(y, x) A Prime(y))

For every positive integer x, there is a pos. int. y such thaty > x and y is prime.

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

For each positive integer X, if x is prime, then x = 2 or x is odd.

dx Ay (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist positive integers x and y such that x + 2 =y and x and y are prime.



Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even”  Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x=y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y =2"

Translate the following statements to English

Vx dy Greater(y, x)

For every positive integer x, there is a positive integer y, such thaty > x.
dy Vx Greater(y, x)

There is a positive integer y such that, for every pos. int. X, we have y > x.
Vx dy (Greater(y, x) A Prime(y))

For every positive integer x, there is a pos. int. y such thaty > x and y is prime.



Statements with Quantifiers (Natural Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even”  Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x=y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y =2"

Translate the following statements to English

Vx dy Greater(y, x)

For every positive integer, there is some larger positive integer.
dy Vx Greater(y, x)

There is a positive integer that is larger than every other positive integer.
Vx dy (Greater(y, x) A Prime(y))

For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names



English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “xis a cat”

Mammals | Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”

“All red cats like tofu”

VX ((Red(x) A Cat(x)) — LikesTofu(x))

“Some red cats don’t like tofu”

1y ((Red(y) A Cat(y)) A —LikesTofu(y))



English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “xis a cat”

Mammals | Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”

—]

When putting two predicates together like this, we
‘ use an “and”.

When restricting to a smaller
domain in a “for all” we use

“All Red cats like tofu”«

implication.
—d4 _ When restricting to a smaller
“Some red cats don’t like tofu” €— domain in an “exists” we use
and.

“Some” means “there exists”.



Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even”  Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x=y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y =2"

Translate the following statements to English

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

For each positive integer X, if x is prime, then x = 2 or x is odd.
dx dy (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist positive integers x and y such that x + 2 =y and x and y are prime.



Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even”  Greater(x, y) ::= “x>y”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x=y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y =2"

Translate the following statements to English

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

Every prime number is either 2 or odd.
dx dy (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist prime numbers that differ by two.

Spot the domain restriction patterns



English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “xis a cat”

Mammals | Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”

“All Red cats like tofu”
“Red cats like tofu”

L When there’s no leading
quantification, it means “for all”.

“Some red cats don’t like tofu”
“A red cat doesn’t like tofu”

l — “A” means “there exists”.




Statements with Quantifiers (Natural Translations)

Translations often (not always) sound more natural if we

1. Notice “domain restriction” patterns
Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

Every prime number is either 2 or odd.

2. Avoid introducing unnecessary variable names

Vx dy Greater(y, x)

For every positive integer, there is some larger positive integer.

3. Can sometimes drop “all” or “there is”
— dx (Even(x) A Prime(x) A Greater(x, 2))

No even prime is greater than 2.



Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit” |

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition! Which one seems right?



Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit” |

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Domain of Discourse
{plum, apple}

(*) PurpleFruit(plum) A PurpleFruit(apple)

(a) PurpleFruit(plum) v PurpleFruit(apple)
(b) — PurpleFruit(plum) v — PurpleFruit(apple)
(c) — PurpleFruit(plum) A — PurpleFruit(apple)



De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)




De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

“There is no integer larger than every other integer”

—dxVy (x2y)
= Vx—Vy (x2y)
Vx dy=(x2y)
Vx 3dy (y>x)

“For every integer, there is a larger integer”



De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

These are equivalent but not equal
They have different English translations, e.g.:
There is no unicorn — dx Unicorn(x)

Every animal is not a unicorn  V/x — Unicorn(x)



De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

“No even prime is greater than 2”

— 3Ix (Even(x) A Prime(x) A Greater(x, 2))

= Vx —(Even(x) A Prime(x) A Greater(x, 2))

= Vx (—(Even(x) A Prime(x)) v —Greater(x, 2))
= Vx ((Even(x) A Prime(x)) —> —Greater(x, 2))
= VX ((Even(x) A Prime(x)) — LessEq(x, 2))

“Every even prime is less than or equal to 2.”



De Morgan’s Laws for Quantifiers

We just saw that

— 3Ix (P(x) A R(x)) = Vx (P(x) > — R(x))

Can similarly show that

—VX (P(x) = R(x)) = Ix (P(x) A = R(x))

De Morgan’s Laws respect domain restrictions!
(It leaves them in place and only negates the other parts.)



Scope of Quantifiers

Ix (P(x) AQ(x)) vs. dxP(x) A 3dx Q(x)



Scope of Quantifiers

Ix (P(x) AQ(x)) vs. dxP(x) AdxQx)

This one asserts P This one asserts P and Q
and Q of the same x. of potentially different x’s.

Variables with the same name do not
necessarily refer to the same object.




Nested Quantifiers

* Bound variable names don’t matter
Vx Ay P(x, y) = Va db P(a, b)

* Positions of quantifiers can sometimes change
Vx (Q(x) A Jy P(x, y)) = Vx Jy (Q(x) A P(x, y))

 But: orderis important...



Quantifier Order Can Matter

Domain of Discourse

Predicate Definitions

{1I 2) 3) 4}

“There is a number greater than or equal to all numbers.”

dx Vy GreaterEq(x, v)))

GreaterEq(x, y) ::= “x2y”

1 2 3 4
Al T|F | F|F
2| T| T | F|F
X3TTTF
[_4TTTT




Quantifier Order Can Matter

Domain of Discourse
{1I 2) 3) 4}

“There is a number greater than or equal to all numbers.”

dx Vy GreaterEq(x, v)))

“Every number has a number greater than or equal to it.”

Predicate Definitions

GreaterEq(x, y) ::= “x2y”

Yy
2 3 4
TIF|F|F
2T’T E | F
X3T|3§!F
4l T T
| —

Yy dx GreaterEq(x, y)))



Quantifier Order Can Matter

Domain of Discourse
{1I 2) 3) 4}

Predicate Definitions

GreaterEq(x, y) ::= “x2y”

2 3 4
u . ” T{F | F|F
There is a number greater than or equal to all numbers. 5
T T|F|F
X Va N
dx Yy GreaterEq(x, y))) glrll1]T
AV
“Every number has a number greater than or equal to it.” [_4 TV T

Yy dx GreaterEq(x, y)))

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true.

(

.

Important: both include the case x =y

Different names does not imply different objects!

~\

y,




Quantification with Two Variables

expression

when true

when false

Vx YV yP(x,y)

Every pair is true.

At least one pair is false.

dx3yP(x, )

At least one pair is true.

All pairs are false.

vV x3yP(x,vy)

We can find a specific y for
each x.

(Xll yl)i (Xz, y2)l (X3r y3)

Some x doesn’t have a
corresponding y.

dy V xP(x, y)

We can find ONE y that
works no matter what x is.

(Xll y)/ (XZI y)l (X3, y)

For any candidate y, there is
an x that it doesn’t work for.




