CSE 311: Foundations of Computing

Lecture 6: Predicate Logic

THREE LOGICIANS WALK INTO A BAR...
DOES EVERYONE ||

WANT BEER?

Last class

Canonical Forms
— sum-of-products and product-of-sums
— both are useful

Corollaries of construction:
— any function can be formed with just —, v, A

— actually, just —, v (De Morgan’s laws)

— actually, just A (HW1 Q4)
NAND and NOR also have this property

Predicate Logic

* Propositional Logic

— Allows us to analyze complex propositions in
terms of their simpler constituent parts (a.k.a.
atomic propositions) joined by connectives

* Predicate Logic

— Lets us analyze them at a deeper level by
expressing how those propositions depend on
the objects they are talking about

”

“All positive integers x, y, and z satisfy x3 + y3 = z3.

Predicate Logic

Adds two key notions to propositional logic
— Predicates

— Quantifiers

Predicates

Predicate
— A function that returns a truth value, e.g.,

Cat(x) ::= “x is a cat”

Prime(x) ::= “x is prime”

HasTaken(x, y) ::= “student x has taken course y”
LessThan(x, y) ::= “x<y”

Sum(x, vy, z) :=“x+y=2"

GreaterThan5(x) ::= “x > 5”

HasNChars(s, n) ::= “string s has length n”

Predicates can have varying numbers of arguments
and input types.

Domain of Discourse

For ease of use, we define one “type”’/“domain” that we
work over. This non-empty set of objects is called the
“domain of discourse”.

For each of the following, what might the domain be?
(1) “x is a cat”, “x barks”, “x ruined my couch”

“mammals” or “sentient beings” or “cats and dogs” or ...
(2) “x is prime”, “x =07, “x< 07, “x is a power of two”
“numbers” or “integers” or “integers greater than 5” or ...

(3) “student x has taken course y” “x is a pre-req for 7’

“students and courses” or “university entities” or ...

Quantifiers

We use quantifiers to talk about collections of objects.

Vx P(x) I @)

P(x) is true for every x in the domain QUANTIFIEF
read as “for all x, P of x”

Ix P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Statements with Quantifiers

Domain of Discourse
Positive Integers

Predicate Definitions

Even(x) ::= “x is even” Greater(x, y) ::= “x>y”
Odd(x) ::= “x is odd” Equal(x, y) ::=“x=y”

\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y =2"

Determine the truth values of each of these statements:

dx Even(x)
Vx Odd(x)
Vx (Even(x) v Odd(x))
dx (Even(x) A Odd(x))

Vx Greater(x+1, x)

T eg246,..

F eg.24,6,..

T every integer is either even or odd
F nointegeris both even and odd

T adding 1 makes a bigger number

dx (Even(x) A Prime(x)) T Even(2) is true and Prime(2) is true

Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x=y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y =2"

Translate the following statements to English

Vx dy Greater(y, x)
For every positive integer x, there is a positive integer y, such thaty > x.
dy Vx Greater(y, x)

There is a positive integer y such that, for every pos. int. X, we have y > x.

Vx 3y (Greater(y, x) A Prime(y))

For every positive integer x, there is a pos. int. y such thaty > x and y is prime.

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

For each positive integer X, if x is prime, then x = 2 or x is odd.

dx Ay (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist positive integers x and y such that x + 2 =y and x and y are prime.

Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x=y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y =2"

Translate the following statements to English

Vx dy Greater(y, x)

For every positive integer x, there is a positive integer y, such thaty > x.
dy Vx Greater(y, x)

There is a positive integer y such that, for every pos. int. X, we have y > x.
Vx dy (Greater(y, x) A Prime(y))

For every positive integer x, there is a pos. int. y such thaty > x and y is prime.

Statements with Quantifiers (Natural Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x=y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y =2"

Translate the following statements to English

Vx dy Greater(y, x)

For every positive integer, there is some larger positive integer.
dy Vx Greater(y, x)

There is a positive integer that is larger than every other positive integer.
Vx dy (Greater(y, x) A Prime(y))

For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “xis a cat”

Mammals | Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”

“All red cats like tofu”

VX ((Red(x) A Cat(x)) — LikesTofu(x))

“Some red cats don’t like tofu”

1y ((Red(y) A Cat(y)) A —LikesTofu(y))

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “xis a cat”

Mammals | Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”

—]

When putting two predicates together like this, we
‘ use an “and”.

When restricting to a smaller
domain in a “for all” we use

“All Red cats like tofu”«

implication.
—d4 _ When restricting to a smaller
“Some red cats don’t like tofu” €— domain in an “exists” we use
and.

“Some” means “there exists”.

Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x=y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y =2"

Translate the following statements to English

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

For each positive integer X, if x is prime, then x = 2 or x is odd.
dx dy (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist positive integers x and y such that x + 2 =y and x and y are prime.

Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>y”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x=y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y =2"

Translate the following statements to English

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

Every prime number is either 2 or odd.
dx dy (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist prime numbers that differ by two.

Spot the domain restriction patterns

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “xis a cat”

Mammals | Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”

“All Red cats like tofu”
“Red cats like tofu”

L When there’s no leading
quantification, it means “for all”.

“Some red cats don’t like tofu”
“A red cat doesn’t like tofu”

l — “A” means “there exists”.

Statements with Quantifiers (Natural Translations)

Translations often (not always) sound more natural if we

1. Notice “domain restriction” patterns
Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

Every prime number is either 2 or odd.

2. Avoid introducing unnecessary variable names

Vx dy Greater(y, x)

For every positive integer, there is some larger positive integer.

3. Can sometimes drop “all” or “there is”
— dx (Even(x) A Prime(x) A Greater(x, 2))

No even prime is greater than 2.

Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit” |

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition! Which one seems right?

Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit” |

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Domain of Discourse
{plum, apple}

(*) PurpleFruit(plum) A PurpleFruit(apple)

(a) PurpleFruit(plum) v PurpleFruit(apple)
(b) — PurpleFruit(plum) v — PurpleFruit(apple)
(c) — PurpleFruit(plum) A — PurpleFruit(apple)

De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

“There is no integer larger than every other integer”

—dxVy (x2y)
= Vx—Vy (x2y)
Vx dy=(x2y)
Vx 3dy (y>x)

“For every integer, there is a larger integer”

De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

These are equivalent but not equal
They have different English translations, e.g.:
There is no unicorn — dx Unicorn(x)

Every animal is not a unicorn V/x — Unicorn(x)

De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

“No even prime is greater than 2”

— 3Ix (Even(x) A Prime(x) A Greater(x, 2))

= Vx —(Even(x) A Prime(x) A Greater(x, 2))

= Vx (—(Even(x) A Prime(x)) v —Greater(x, 2))
= Vx ((Even(x) A Prime(x)) —> —Greater(x, 2))
= VX ((Even(x) A Prime(x)) — LessEq(x, 2))

“Every even prime is less than or equal to 2.”

De Morgan’s Laws for Quantifiers

We just saw that

— 3Ix (P(x) A R(x)) = Vx (P(x) > — R(x))

Can similarly show that

—VX (P(x) = R(x)) = Ix (P(x) A = R(x))

De Morgan’s Laws respect domain restrictions!
(It leaves them in place and only negates the other parts.)

Scope of Quantifiers

Ix (P(x) AQ(x)) vs. dxP(x) A 3dx Q(x)

Scope of Quantifiers

Ix (P(x) AQ(x)) vs. dxP(x) AdxQx)

This one asserts P This one asserts P and Q
and Q of the same x. of potentially different x’s.

Variables with the same name do not
necessarily refer to the same object.

Nested Quantifiers

* Bound variable names don’t matter
Vx Ay P(x, y) = Va db P(a, b)

* Positions of quantifiers can sometimes change
Vx (Q(x) A Jy P(x, y)) = Vx Jy (Q(x) A P(x, y))

 But: orderis important...

Quantifier Order Can Matter

Domain of Discourse

Predicate Definitions

{1I 2) 3) 4}

“There is a number greater than or equal to all numbers.”

dx Vy GreaterEq(x, v)))

GreaterEq(x, y) ::= “x2y”

1 2 3 4
Al T|F | F|F
2| T| T | F|F
X3TTTF
[_4TTTT

Quantifier Order Can Matter

Domain of Discourse
{1I 2) 3) 4}

“There is a number greater than or equal to all numbers.”

dx Vy GreaterEq(x, v)))

“Every number has a number greater than or equal to it.”

Predicate Definitions

GreaterEq(x, y) ::= “x2y”

Yy
2 3 4
TIF|F|F
2T’T E | F
X3T|3§!F
4l T T
| —

Yy dx GreaterEq(x, y)))

Quantifier Order Can Matter

Domain of Discourse
{1I 2) 3) 4}

Predicate Definitions

GreaterEq(x, y) ::= “x2y”

2 3 4
u . ” T{F | F|F
There is a number greater than or equal to all numbers. 5
T T|F|F
X Va N
dx Yy GreaterEq(x, y))) glrll1]T
AV
“Every number has a number greater than or equal to it.” [_4 TV T

Yy dx GreaterEq(x, y)))

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true.

(

.

Important: both include the case x =y

Different names does not imply different objects!

~\

y,

Quantification with Two Variables

expression

when true

when false

Vx YV yP(x,y)

Every pair is true.

At least one pair is false.

dx3yP(x,)

At least one pair is true.

All pairs are false.

vV x3yP(x,vy)

We can find a specific y for
each x.

(Xll yl)i (Xz, y2)l (X3r y3)

Some x doesn’t have a
corresponding y.

dy V xP(x, y)

We can find ONE y that
works no matter what x is.

(Xll y)/ (XZI y)l (X3, y)

For any candidate y, there is
an x that it doesn’t work for.

