CSE 311: Foundations of Computing

Lecture 6: Predicate Logic

Canonical Forms

- sum-of-products and product-of-sums
- both are useful

Corollaries of construction:

- any function can be formed with just –, \lor , \land
- actually, just \neg , \lor (De Morgan's laws)
- actually, just A (HW1 Q4)

NAND and NOR also have this property

Predicate Logic

Propositional Logic

 Allows us to analyze complex propositions in terms of their simpler constituent parts (a.k.a. atomic propositions) joined by connectives

Predicate Logic

 Lets us analyze them at a deeper level by expressing how those propositions depend on the objects they are talking about

"All positive integers x, y, and z satisfy $x^3 + y^3 \neq z^3$."

Adds two key notions to propositional logic

- Predicates
- Quantifiers

Predicates

Predicate

- A function that returns a truth value, e.g.,

Cat(x) ::= "x is a cat" Prime(x) ::= "x is prime" HasTaken(x, y) ::= "student x has taken course y" LessThan(x, y) ::= "x < y" Sum(x, y, z) ::= "x + y = z" GreaterThan5(x) ::= "x > 5" HasNChars(s, n) ::= "string s has length n"

Predicates can have varying numbers of arguments and input types.

For ease of use, we define one "type"/"domain" that we work over. This non-empty set of objects is called the "domain of discourse".

For each of the following, what might the domain be? (1) "x is a cat", "x barks", "x ruined my couch"

"mammals" or "sentient beings" or "cats and dogs" or ...

(2) "x is prime", "x = 0", "x < 0", "x is a power of two"

"numbers" or "integers" or "integers greater than 5" or ...

(3) "student x has taken course y" "x is a pre-req for z"

"students and courses" or "university entities" or ...

We use *quantifiers* to talk about collections of objects.

∀x P(x)
P(x) is true for every x in the domain read as "for all x, P of x"

∃x P(x)

There is an x in the domain for which P(x) is true read as "there exists x, P of x"

Statements with Quantifiers

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Determine the truth values of each of these statements:

- $\exists x Even(x)$ e.g. 2, 4, 6, ... Т
- F e.g. 2, 4, 6, ... $\forall x \text{ Odd}(x)$

Т

- $\forall x (Even(x) \lor Odd(x))$
- $\exists x (Even(x) \land Odd(x))$
- $\forall x \text{ Greater}(x+1, x)$

 $\exists x (Even(x) \land Prime(x))$ **T**

- every integer is either even or odd Т
 - F no integer is both even and odd
 - adding 1 makes a bigger number
 - Even(2) is true and Prime(2) is true

Statements with Quantifiers (Literal Translations)

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

∀x ∃y Greater(y, x)

For every positive integer x, there is a positive integer y, such that y > x.

 $\exists y \ \forall x \ Greater(y, x)$

There is a positive integer y such that, for every pos. int. x, we have y > x.

 $\forall x \exists y (Greater(y, x) \land Prime(y))$

For every positive integer x, there is a pos. int. y such that y > x and y is prime.

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$

For each positive integer x, if x is prime, then x = 2 or x is odd.

 $\exists x \exists y (Sum(x, 2, y) \land Prime(x) \land Prime(y))$

There exist positive integers x and y such that x + 2 = y and x and y are prime.

Statements with Quantifiers (Literal Translations)

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

∀x ∃y Greater(y, x)

For every positive integer x, there is a positive integer y, such that y > x.

 $\exists y \ \forall x \ Greater(y, x)$

There is a positive integer y such that, for every pos. int. x, we have y > x.

 $\forall x \exists y (Greater(y, x) \land Prime(y))$

For every positive integer x, there is a pos. int. y such that y > x and y is prime.

Statements with Quantifiers (Natural Translations)

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

∀x ∃y Greater(y, x)

For every positive integer, there is some larger positive integer.

∃y ∀x Greater(y, x)

There is a positive integer that is larger than every other positive integer.

 $\forall x \exists y (Greater(y, x) \land Prime(y))$

For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names

English to Predicate Logic

Predicate Definitions

Cat(x) ::= "x is a cat" Red(x) ::= "x is red" LikesTofu(x) ::= "x likes tofu"

"All red cats like tofu"

 $\forall x ((\text{Red}(x) \land \text{Cat}(x)) \rightarrow \text{LikesTofu}(x))$

"Some red cats don't like tofu"

 $\exists y ((\text{Red}(y) \land \text{Cat}(y)) \land \neg \text{LikesTofu}(y))$

English to Predicate Logic

Statements with Quantifiers (Literal Translations)

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$

For each positive integer x, if x is prime, then x = 2 or x is odd.

 $\exists x \exists y (Sum(x, 2, y) \land Prime(x) \land Prime(y))$

There exist positive integers x and y such that x + 2 = y and x and y are prime.

Statements with Quantifiers (Literal Translations)

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$

Every prime number is either 2 or odd.

 $\exists x \exists y (Sum(x, 2, y) \land Prime(x) \land Prime(y))$

There exist prime numbers that differ by two.

Spot the domain restriction patterns

English to Predicate Logic

Predicate Definitions

Cat(x) ::= "x is a cat" Red(x) ::= "x is red" LikesTofu(x) ::= "x likes tofu"

"Some red cats don't like tofu"

"A red cat doesn't like tofu" "A" means "there exists".

Statements with Quantifiers (Natural Translations)

Translations often (not always) sound more <u>natural</u> if we

1. Notice "domain restriction" patterns

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$

Every prime number is either 2 or odd.

2. Avoid introducing *unnecessary* variable names

 $\forall x \exists y Greater(y, x)$

For every positive integer, there is some larger positive integer.

3. Can sometimes drop "all" or "there is"

 $\neg \exists x (Even(x) \land Prime(x) \land Greater(x, 2))$

No even prime is greater than 2.

Negations of Quantifiers

Predicate Definitions

PurpleFruit(x) ::= "x is a purple fruit"

(*) $\forall x PurpleFruit(x)$ ("All fruits are purple")

What is the negation of (*)?

- (a) "there exists a purple fruit"
- (b) "there exists a non-purple fruit"
- (c) "all fruits are not purple"

Try your intuition! Which one seems right?

Negations of Quantifiers

Predicate Definitions

PurpleFruit(x) ::= "x is a purple fruit"

- (*) $\forall x PurpleFruit(x)$ ("All fruits are purple")
 - What is the negation of (*)?
 - (a) "there exists a purple fruit"
 - (b) "there exists a non-purple fruit"
 - (c) "all fruits are not purple"

- (*) PurpleFruit(plum) ^ PurpleFruit(apple)
 - (a) PurpleFruit(plum) ∨ PurpleFruit(apple)
 - (b) ¬ PurpleFruit(plum) ∨ ¬ PurpleFruit(apple)
 - (c) ¬ PurpleFruit(plum) ∧ ¬ PurpleFruit(apple)

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \neg \exists x P(x) \equiv \forall x \neg P(x)$$

"There is no integer larger than every other integer"

$$\neg \exists x \forall y (x \ge y)$$

$$\equiv \forall x \neg \forall y (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

"For every integer, there is a larger integer"

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

These are equivalent but not equal

They have different English translations, e.g.:

There is no unicorn $\neg \exists x Unicorn(x)$

Every animal is not a unicorn $\forall x \neg$ Unicorn(x)

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

"No even prime is greater than 2"

$$\neg \exists x (Even(x) \land Prime(x) \land Greater(x, 2))$$

- $\equiv \forall x \neg (Even(x) \land Prime(x) \land Greater(x, 2))$
- $\equiv \forall x (\neg(Even(x) \land Prime(x)) \lor \neg Greater(x, 2))$
- $\equiv \forall x ((Even(x) \land Prime(x)) \rightarrow \neg Greater(x, 2))$
- $\equiv \forall x ((Even(x) \land Prime(x)) \rightarrow LessEq(x, 2))$

"Every even prime is less than or equal to 2."

We just saw that

$$\neg \exists x (P(x) \land R(x)) \equiv \forall x (P(x) \rightarrow \neg R(x))$$

Can similarly show that

$$\neg \forall x (P(x) \rightarrow R(x)) \equiv \exists x (P(x) \land \neg R(x))$$

De Morgan's Laws respect domain restrictions! (It leaves them in place and only negates the other parts.) $\exists x (P(x) \land Q(x))$ VS. $\exists x P(x) \land \exists x Q(x)$

 $\exists x \ (P(x) \land Q(x)) \qquad \forall S. \qquad \exists x \ P(x) \land \exists x \ Q(x)$

This one asserts P and Q of the same x.

This one asserts P and Q of potentially different x's.

Variables with the same name do not necessarily refer to the same object.

Bound variable names don't matter

 $\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)$

- Positions of quantifiers can <u>sometimes</u> change $\forall x (Q(x) \land \exists y P(x, y)) \equiv \forall x \exists y (Q(x) \land P(x, y))$
- But: order is important...

Quantifier Order Can Matter

Quantifier Order Can Matter

Quantifier Order Can Matter

The purple statement requires **an entire row** to be true. The red statement requires one entry in **each column** to be true.

Important: both include the case x = y

Different names does not imply different objects!

Quantification with Two Variables

expression	when true	when false
$\forall x \forall y P(x, y)$	Every pair is true.	At least one pair is false.
∃ x ∃ y P(x, y)	At least one pair is true.	All pairs are false.
∀ x ∃ y P(x, y)	We can find a specific y for each x. $(x_1, y_1), (x_2, y_2), (x_3, y_3)$	Some x doesn't have a corresponding y.
∃ y ∀ x P(x, y)	We can find ONE y that works no matter what x is. $(x_1, y), (x_2, y), (x_3, y)$	For any candidate y, there is an x that it doesn't work for.