CSE 311: Foundations of Computing

Lecture 5: DNF, CNF and Predicate Logic

Administrivia

HW1 due tonight

HW2 posted tomorrow

- some tools available for testing equivalence chains
- one is http://homes.cs.washington.edu/~kevinz/equiv-test/
- another mentioned in the HW
- both are optional
- also "beta" software

Last Time: Building Circuits

"Turn the Crank" Process:

1. write down a table showing desired $0 / 1$ outputs
2. construct a Boolean algebra expression

- term for each 1 in the column
- sum (or) them to get all 1s

3. simplify the expression using equivalences
4. translate Boolean algebra to a circuit
(Since it's "turn the crank", software can do this for you.)

Warm-up Exercise

- Create a Boolean Algebra expression for " c " below in terms of the variables \boldsymbol{a} and \boldsymbol{b}

\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}
1	1	0
1	0	1
0	1	1
0	0	0

$$
c=a b^{\prime}+a^{\prime} b
$$

Warm-up Exercise

- Create a Boolean Algebra expression for " c " below in terms of the variables \boldsymbol{a} and \boldsymbol{b}

$$
c=a b^{\prime}+a^{\prime} b
$$

- Draw this as a circuit (using AND, OR, NOT)

1-bit Binary Adder

A	$0+0=0\left(\right.$ with $\left.C_{\text {OUT }}=0\right)$
$+B$	$0+1=1\left(\right.$ with $\left.C_{\text {OUT }}=0\right)$
S	$1+0=1\left(\right.$ with $\left.C_{\text {OUT }}=0\right)$
(CoUT)	$1+1=0\left(\right.$ with $\left.C_{\text {OUT }}=1\right)$

1-bit Binary Adder

$$
\begin{array}{cl}
A & 0+0=0\left(\text { with } C_{\text {OUT }}=0\right) \\
+B & 0+1=1\left(\text { with } C_{\text {OUT }}=0\right) \\
\hline S & 1+0=1\left(\text { with } C_{\text {OUT }}=0\right) \\
\left(C_{\text {OUT })}\right. & 1+1=0\left(\text { with } C_{\text {OUT }}=1\right)
\end{array}
$$

Idea: chain these together to add larger numbers

Recall from	248
elementary school:	+375

1-bit Binary Adder

A	$0+0=0\left(\right.$ with $\left.C_{\text {OUT }}=0\right)$
$+B$	$0+1=1\left(\right.$ with $\left.C_{\text {OUT }}=0\right)$
S	$1+0=1\left(\right.$ with $\left.C_{\text {OUT }}=0\right)$
$\left(C_{\text {OUT })}\right.$	$1+1=0\left(\right.$ with $\left.C_{\text {OUT }}=1\right)$

Idea: These are chained together with a carry-in

$\quad{ }^{\left(C_{\text {IN }}\right)}$
$+B$
S
$\left(C_{\text {out }}\right)$

$\mathrm{C}_{\text {out }} \mathrm{C}_{\text {IN }}$				
	1	0	0	
0	1	1	1	0
0	1	1	0	1
1	1	0	1	1

1-bit Binary Adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

\mathbf{A}	\mathbf{B}	$\mathbf{C}_{\mathbf{I N}}$	$\mathbf{C}_{\text {out }}$	\mathbf{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

1-bit Binary Adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

$\mathrm{C}_{\text {OUt }} \mathrm{C}_{\text {IN }}$				
$\bigcirc \bigcap \bigcirc \bigcirc$				
A	A	A	A	A
B	B	B	B	B
S	S	S	S	S

A	B	$\mathrm{C}_{1 \times}$	$\mathrm{C}_{\text {out }}$	S	Derive an expression for S	
0	0	0	0	0		
0	0	1	0	1	$A^{\prime} \cdot B^{\prime} \cdot C_{\text {IN }}$	
0	1	0	0	1	$A^{\prime} \cdot B \cdot C_{\mathbf{I N}^{\prime}}$	
0	1	1	1	0		$\mathbf{S}=\mathbf{A}^{\prime} \cdot \mathbf{B}^{\prime} \cdot \mathbf{C}_{\mathbb{N}}+\mathbf{A}^{\prime} \cdot \mathbf{B} \cdot \mathbf{C}_{N^{\prime}}+$
1	0	0	0	1	$1 \mathrm{~A}^{\prime} \cdot \mathrm{B}^{\prime} \cdot \mathrm{C}_{\text {IN }}$,	$A \cdot B^{\prime} \cdot C_{\mathbf{I N}^{\prime}}^{\prime}+A \cdot B \cdot C_{\mathbf{I N}_{N}}$
1	0	1	1	0		
1	1	0	1	0		
1	1	1	1	1	$\cdots \mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C}_{\text {IN }}$	

1-bit Binary Adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

$\mathrm{COUT}^{\mathrm{C}_{\text {IN }}}$				
A	A	A	A	A
B	B	B	B	B
S	S	S	S	S

A	B	$\mathrm{C}_{\text {IN }}$	$\mathrm{C}_{\text {out }}$	S	
0	0	0	0	0	
0	0	1	0	1	Derive an expression for $\mathrm{C}_{\text {Out }}$
0	1	0	0	1	
0	1	1	1	0	$A^{\prime} \cdot B^{\prime} \cdot C_{\text {IN }}$
1	0	0	0	1	$\mathrm{C}_{\text {OUT }}=A^{\prime} \cdot B \cdot C_{\text {IN }}+A \cdot B^{\prime} \cdot C_{\text {IN }}+$
1	0	1	1	0	$\rightarrow A \cdot B^{\prime} \cdot C_{\text {IN }} \longrightarrow A \cdot B \cdot C_{\text {IN }}{ }^{\prime}+A \cdot B \cdot C_{\text {IN }}$
1	1	0	1	0	$A \cdot B \cdot C_{\text {IN }}{ }^{\prime}$
1	1	1	1	1	$A \cdot B \cdot C_{I N}$

$S=A^{\prime} \cdot B^{\prime} \cdot C_{\text {IN }}+A^{\prime} \cdot B \cdot C_{I N_{N}}+A \cdot B^{\prime} \cdot C_{I_{N}}{ }^{\prime}+A \cdot B \cdot C_{\text {IN }}$

1-bit Binary Adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

$\mathrm{C}_{\text {Out }} \mathrm{C}_{\text {IN }}$				
A	A	A	A	A
B	B	B	B	B
S	S	S	S	S

A	B	$\mathrm{C}_{\text {IN }}$	$\mathrm{C}_{\text {out }}$	S	$\begin{aligned} & S=A^{\prime} \cdot B^{\prime} \cdot C_{\text {IN }}+A^{\prime} \cdot B \cdot C_{I_{N}}+A \cdot B^{\prime} \cdot C_{\text {IN }}+A \cdot B \cdot C_{I N} \\ & C_{\text {OUT }}=A^{\prime} \cdot B \cdot C_{I N}+A \cdot B^{\prime} \cdot C_{I N}+A \cdot B \cdot C_{I N}^{\prime}+A \cdot B \cdot C_{\text {IN }} \end{aligned}$
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

- e.g., full adder's carry-out function

```
Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin
    = A' BCin + A B'Cin + A BCin' + A BCin + A BCin
    = A' BCin + A BCin + A B'Cin + ABCin' + ABCin
    =(A'}+A)BCin + A B'Cin + ABCin' + A BCin
    = (1) BCin + A B'Cin + A BCin' + A BCin
    = BCin + A B'Cin +ABCin' + ABCin + ABCin
    = BCin + A B'Cin + ABCin + ABCin' + ABCin
    = BCin + A (B' + B)Cin + A BCin' + A BCin
    = BCin + A (1)Cin + A BCin' + A BCin
    = BCin + ACin + A B (Cin' + Cin)
    = BCin + ACin + A B (1)
    = BCin + ACin + AB
```


Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

- e.g., full adder's carry-out function

Cout

$$
\begin{aligned}
& =A^{\prime} B C i n+A B^{\prime} C i n+A B C i n+A B C i n \\
& =A^{\prime} B C i n+A B^{\prime} C i n+A B C i n+A B C i n+A B C i n \\
& =A^{\prime} B C i n+A B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n \\
& =\left(A^{\prime}+A\right) B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n \\
& =(1) B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n \\
& =B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n+A B C i n \\
& =B C i n+A B^{\prime} C i n+A B C i n+A B C i n^{\prime}+A B C i n \\
& =B C i n+A\left(B^{\prime}+B\right) C i n+A B C i n^{\prime}+A B C i n \\
& =B C i n+A(1) C i n+A B C i n+A B C i n \\
& =B C i n+A C i n+A B(C i n+C C i n) \\
& =B C i n+A C i n+A B(1) \\
& =B C i n+A C i n+A B
\end{aligned}
$$

A 2-bit Ripple-Carry Adder

Mapping Truth Tables to Logic Gates

Canonical Forms

- Truth table is the unique signature of a $0 / 1$ function
- The same truth table can have many gate realizations
- We've seen this already
- Depends on how good we are at Boolean simplification
- Canonical forms
- Standard forms for a Boolean expression
- We all produce the same expression

Sum-of-Products Canonical Form

- AKA Disjunctive Normal Form (DNF)
- AKA Minterm Expansion

Add the minterms together

$$
F=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C^{\prime}
$$

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(1)

Read T rows off
truth table
001
011
101
110
111
(2)

Convert to Boolean Algebra

Sum-of-Products Canonical Form

Product term (or minterm)

- ANDed product of literals - input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

A	B	C	minterms
0	0	0	$A^{\prime} B^{\prime} C^{\prime}$
0	0	1	$A^{\prime} \prime^{\prime} C$
0	1	0	$A^{\prime} C^{\prime} C^{\prime}$
0	1	1	$A^{\prime} B^{\prime}$
1	0	0	$A B^{\prime} C^{\prime}$
1	0	1	$A B^{\prime} C$
1	1	0	$A B C^{\prime}$
1	1	1	$A B C$

$$
\begin{aligned}
& \text { F in canonical form: } \\
& \begin{aligned}
F(A, B, C) & =A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C \\
\text { canonical form } & \neq \text { minimal form } \\
F(A, B, C) & =A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C+A B C^{\prime} \\
& =\left(A^{\prime} B^{\prime}+A^{\prime} B+A B^{\prime}+A B\right) C+A B C^{\prime} \\
& =\left(\left(A^{\prime}+A\right)\left(B^{\prime}+B\right)\right) C+A B C^{\prime} \\
& =C+A B C^{\prime} \\
& =A B C^{\prime}+C \\
& =A B+C
\end{aligned}
\end{aligned}
$$

Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
- AKA Maxterm Expansion

Multiply the maxterms together

Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
- AKA Maxterm Expansion

Multiply the maxterms together

$$
F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)
$$

(2)

Negate all bits truth table

111

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

000
010
100
(3)

Convert to Boolean Algebra $A+B+C$

Product-of-Sums: Why does this procedure work?

Useful Facts:

- We know (F')' = F
- We know how to get a minterm expansion for F'

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Product-of-Sums: Why does this procedure work?

Useful Facts:

- We know (F')' = F
- We know how to get a minterm expansion for F^{\prime}

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$
F^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}
$$

Taking the complement of both sides...

$$
\left(F^{\prime}\right)^{\prime}=\left(A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}\right)^{\prime}
$$

And using DeMorgan/Comp....

$$
F=\left(A^{\prime} B^{\prime} C^{\prime}\right)^{\prime} \quad\left(A^{\prime} B C^{\prime}\right)^{\prime} \quad\left(A B^{\prime} C^{\prime}\right)^{\prime}
$$

$$
F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)
$$

Product-of-Sums Canonical Form

Sum term (or maxterm)

- ORed sum of literals - input combination for which output is false
- each variable appears exactly once, true or inverted (but not both)

A	B	C	maxterms
0	0	0	$\mathrm{~A}+\mathrm{B}+\mathrm{C}$
0	0	1	$\mathrm{~A}+\mathrm{B}+\mathrm{C}^{\prime}$
0	1	0	$\mathrm{~A}+\mathrm{B}^{\prime}+\mathrm{C}$
0	1	1	$\mathrm{~A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}$
1	0	0	$\mathrm{~A}^{\prime}+\mathrm{B}+\mathrm{C}$
1	0	1	$\mathrm{~A}^{\prime}+\mathrm{B}+\mathrm{C}^{\prime}$
1	1	0	$\mathrm{~A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}$
1	1	1	$\mathrm{~A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}$

F in canonical form:

$$
F(A, B, C)=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)
$$

canonical form \neq minimal form
$F(A, B, C)=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$
$=(A+B+C)\left(A+B^{\prime}+C\right)$
$(A+B+C)\left(A^{\prime}+B+C\right)$
$=(A+C)(B+C)$

Predicate Logic

Predicate Logic

- Propositional Logic
"If you take the high road and I take the low road then l'll arrive in Scotland before you."
- Predicate Logic
"All positive integers x, y, and z satisfy $x^{3}+y^{3} \neq z^{3}$."

Predicate Logic

- Propositional Logic
- Allows us to analyze complex propositions in terms of their simpler constituent parts (a.k.a. atomic propositions) joined by connectives
- Predicate Logic
- Lets us analyze them at a deeper level by expressing how those propositions depend on the objects they are talking about

Predicate Logic

Adds two key notions to propositional logic

- Predicates
- Quantifiers

Predicates

Predicate

- A function that returns a truth value, e.g.,
$\operatorname{Cat}(x)::=$ " x is a cat"
Prime (x) ::= " x is prime"
HasTaken (x, y) ::= "student x has taken course $y "$
LessThan $(x, y)::=" x<y$ "
Sum(x, y, z)::= "x+y=z"
GreaterThan5(x) ::= "x > 5"
HasNChars(s, n) ::= "string s has length n"
Predicates can have varying numbers of arguments and input types.

Domain of Discourse

For ease of use, we define one "type"/"domain" that we work over. This non-empty set of objects is called the "domain of discourse".

For each of the following, what might the domain be?
(1) " x is a cat", " x barks", " x ruined my couch"
"mammals" or "sentient beings" or "cats and dogs" or ...
(2) " x is prime", " $x=0$ ", " $x<0$ ", " x is a power of two"
"numbers" or "integers" or "integers greater than 5" or ...
(3) "student x has taken course y " " x is a pre-req for z "
"students and courses" or "university entities" or ...

