
CSE 311: Foundations of Computing

Lecture 5: DNF, CNF and Predicate Logic



Administrivia

HW1 due tonight

HW2 posted tomorrow
• some tools available for testing equivalence chains

– one is http://homes.cs.washington.edu/~kevinz/equiv-test/
– another mentioned in the HW

• both are optional
– also “beta” software

http://homes.cs.washington.edu/~kevinz/equiv-test/


Last Time: Building Circuits

“Turn the Crank” Process:
1. write down a table showing desired 0/1 outputs
2. construct a Boolean algebra expression

– term for each 1 in the column
– sum (or) them to get all 1s

3. simplify the expression using equivalences
4. translate Boolean algebra to a circuit

(Since it’s “turn the crank”, software can do this for you.)



Warm-up Exercise

• Create a Boolean Algebra expression for “𝒄” below 
in terms of the variables 𝒂 and 𝒃

𝒂 𝒃 𝒄
1 1 0

1 0 1

0 1 1

0 0 0

𝑐 = 𝑎𝑏$ + 𝑎$𝑏



Warm-up Exercise

• Create a Boolean Algebra expression for “𝒄” below 
in terms of the variables 𝒂 and 𝒃

• Draw this as a circuit (using AND, OR, NOT)

𝑐 = 𝑎𝑏$ + 𝑎$𝑏



1-bit Binary Adder
A

+ B
S

(COUT)

0 + 0 = 0 (with COUT = 0)
0 + 1 = 1 (with COUT = 0)
1 + 0 = 1 (with COUT = 0)
1 + 1 = 0 (with COUT = 1)



1-bit Binary Adder
A

+ B
S

(COUT)

0 + 0 = 0 (with COUT = 0)
0 + 1 = 1 (with COUT = 0)
1 + 0 = 1 (with COUT = 0)
1 + 1 = 0 (with COUT = 1)

Idea: chain these together to add larger numbers

2 4 8
+ 3 7 5

Recall from 
elementary school:



1-bit Binary Adder
A

+ B
S

(COUT)

0 + 0 = 0 (with COUT = 0)
0 + 1 = 1 (with COUT = 0)
1 + 0 = 1 (with COUT = 0)
1 + 1 = 0 (with COUT = 1)

Idea: These are chained together with a carry-in

A A A A A
B B B B B
S S S S S

CINCOUT(CIN)
A

+ B
S

(COUT)

0 1 1 1 0
0 1 1 0 1
1 1 0 1 1

CINCOUT
1 1 0 0



1-bit Binary Adder

• Inputs: A, B, Carry-in
• Outputs: Sum, Carry-out

A
B

CIN
COUT
S

A A A A A
B B B B B
S S S S S

CINCOUT

A B CIN COUT S
0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1



1-bit Binary Adder

• Inputs: A, B, Carry-in
• Outputs: Sum, Carry-out A A A A A

B B B B B
S S S S S

CINCOUT

A B CIN COUT S
0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

A’•B’•CIN
A’•B•CIN’

A•B’•CIN’

A•B•CIN

S = A’•B’•CIN + A’•B•CIN’ +     
A•B’•CIN’ + A•B•CIN

Derive an expression for S



1-bit Binary Adder

• Inputs: A, B, Carry-in
• Outputs: Sum, Carry-out A A A A A

B B B B B
S S S S S

CINCOUT

A•B’•CIN
A•B•CIN’

A’•B•CIN

A•B•CIN

A B CIN COUT S
0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

S = A’•B’•CIN + A’•B•CIN’ + A•B’•CIN’ + A•B•CIN

COUT = A’•B•CIN + A•B’•CIN +
A•B•CIN’ + A•B•CIN

Derive an expression for COUT



1-bit Binary Adder

• Inputs: A, B, Carry-in
• Outputs: Sum, Carry-out A A A A A

B B B B B
S S S S S

CINCOUT

COUT = A’•B•CIN + A•B’•CIN + A•B•CIN’ + A•B•CIN

A B CIN COUT S
0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

S = A’•B’•CIN + A’•B•CIN’ + A•B’•CIN’ + A•B•CIN



Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions
– e.g., full adder’s carry-out function 

Cout =  A’ B Cin + A B’ Cin + A B Cin’ + A B Cin
=  A’ B Cin +  A B’ Cin +  A B Cin’  +  A B Cin +  A B Cin
=  A’ B Cin +  A B Cin +  A B’ Cin +  A B Cin’  +  A B Cin
=  (A’ + A) B Cin +  A B’ Cin +  A B Cin’  +  A B Cin
=  (1) B Cin +  A B’ Cin +  A B Cin’  +  A B Cin
=  B Cin +  A B’ Cin + A B Cin’  +  A B Cin +  A B Cin
=  B Cin +  A B’ Cin +  A B Cin +  A B Cin’  +  A B Cin
=  B Cin +  A (B’ + B) Cin +  A B Cin’  +  A B Cin
=  B Cin +  A (1) Cin +  A B Cin’  +  A B Cin
=  B Cin +  A Cin +  A B (Cin’ +  Cin)
=  B Cin +  A Cin +  A B (1)
=  B Cin +  A Cin +  A B 



Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions
– e.g., full adder’s carry-out function 

Cout =  A’ B Cin + A B’ Cin + A B Cin’ + A B Cin
=  A’ B Cin +  A B’ Cin +  A B Cin’  +  A B Cin +  A B Cin
=  A’ B Cin +  A B Cin +  A B’ Cin +  A B Cin’  +  A B Cin
=  (A’ + A) B Cin +  A B’ Cin +  A B Cin’  +  A B Cin
=  (1) B Cin +  A B’ Cin +  A B Cin’  +  A B Cin
=  B Cin +  A B’ Cin + A B Cin’  +  A B Cin +  A B Cin
=  B Cin +  A B’ Cin +  A B Cin +  A B Cin’  +  A B Cin
=  B Cin +  A (B’ + B) Cin +  A B Cin’  +  A B Cin
=  B Cin +  A (1) Cin +  A B Cin’  +  A B Cin
=  B Cin +  A Cin +  A B (Cin’ +  Cin)
=  B Cin +  A Cin +  A B (1)
=  B Cin +  A Cin +  A B adding extra terms 

creates new factoring 
opportunities



A 2-bit Ripple-Carry Adder

A

Sum

CoutCin

B

1-Bit Adder

A
B

Cin Sum

A
B

A
Cin

B
Cin

Cout

A0 B0

CoutCin

Sum0

0

A1 B1

Sum1

CoutCin

A2 B2

Sum2

CoutCin

Uses the fact that                                                         
Sum = A’•B’•CIN + A’•B•CIN’ + A•B’•CIN’ + A•B•CIN

is equivalent to Sum = (A ⊕ B) ⊕ CIN



Mapping Truth Tables to Logic Gates

Given a truth table:
1. Write the output in a table
2. Write the Boolean expression
3. Minimize the Boolean expression
4. Draw as gates
5. Map to available gates

A B C    F
0 0 0    0
0 0 1    0
0 1 0    1
0 1 1    1
1 0 0    0
1 0 1    1
1 1 0    0
1 1 1    1F = A’BC’+A’BC+AB’C+ABC

= A’B(C’+C)+AC(B’+B)
= A’B+AC

notA
B

A
C

F F

notA
B

A
C

2

3

4

5



Canonical Forms

• Truth table is the unique signature of a 0/1 function

• The same truth table can have many gate realizations
– We’ve seen this already
– Depends on how good we are at Boolean simplification

• Canonical forms
– Standard forms for a Boolean expression
– We all produce the same expression



Sum-of-Products Canonical Form

• AKA Disjunctive Normal Form (DNF)
• AKA Minterm Expansion

A B C F
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

001

011

101
110
111

A’B’C

A’BC

AB’C
ABC’
ABC

F

F= A’B’C + A’BC + AB’C + ABC’ + ABC’

Read T rows off
truth table

Convert to
Boolean Algebra

Add the minterms together

1 2

3



Sum-of-Products Canonical Form

Product term (or minterm)
– ANDed product of literals – input combination for which output is true
– each variable appears exactly once, true or inverted (but not both)

A B C minterms
0 0 0 A’B’C’
0 0 1 A’B’C
0 1 0 A’BC’
0 1 1 A’BC
1 0 0 AB’C’
1 0 1 AB’C
1 1 0 ABC’
1 1 1 ABC

F in canonical form:
F(A, B, C) = A’B’C + A’BC + AB’C + ABC’ + ABC

canonical form ¹ minimal form
F(A, B, C) = A’B’C + A’BC + AB’C + ABC + ABC’ 

= (A’B’ + A’B + AB’ + AB)C + ABC’
= ((A’ + A)(B’ + B))C + ABC’
= C + ABC’
= ABC’ + C
= AB + C



Product-of-Sums Canonical Form

• AKA Conjunctive Normal Form (CNF)
• AKA Maxterm Expansion

A B C F
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

F

F =  

Read F rows off
truth table

Negate all
bits

Multiply the maxterms together

1 2

4

Convert to
Boolean Algebra

3



Product-of-Sums Canonical Form

• AKA Conjunctive Normal Form (CNF)
• AKA Maxterm Expansion

A B C F
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

000

010

100

F

F = (A + B + C)(A + B’ + C)(A’ + B + C)

111

101

011

A + B + C

A + B’ + C

A’ + B + C

Read F rows off
truth table

Negate all
bits

Multiply the maxterms together

1 2

4

Convert to
Boolean Algebra

3



Product-of-Sums: Why does this procedure work?

A B C F
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Useful Facts:
• We know (F’)’ = F
• We know how to get a minterm expansion for F’

F’ = A’B’C’ + A’BC’ + AB’C’



Product-of-Sums: Why does this procedure work?

A B C F
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Useful Facts:
• We know (F’)’ = F
• We know how to get a minterm expansion for F’

F’ = A’B’C’ + A’BC’ + AB’C’
Taking the complement of both sides…

(F’)’ = (A’B’C’ + A’BC’ + AB’C’)’
And using DeMorgan/Comp.…

F = (A’B’C’)’  (A’BC’)’  (AB’C’)’

F = (A + B + C)(A + B’ + C)(A’ + B + C)



Product-of-Sums Canonical Form

Sum term (or maxterm)
– ORed sum of literals – input combination for which output is false
– each variable appears exactly once, true or inverted (but not both)

A B C maxterms
0 0 0 A+B+C
0 0 1 A+B+C’
0 1 0 A+B’+C
0 1 1 A+B’+C’
1 0 0 A’+B+C
1 0 1 A’+B+C’
1 1 0 A’+B’+C
1 1 1 A’+B’+C’

F in canonical form:
F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

canonical form ¹ minimal form
F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

= (A + B + C) (A + B’ + C)
(A + B + C) (A’ + B + C)

= (A + C) (B + C)



Predicate Logic



• Propositional Logic
“If you take the high road and I take the low road then I’ll 
arrive in Scotland before you.”

• Predicate Logic 
“All positive integers 𝑥, 𝑦, and 𝑧 satisfy 𝑥& + 𝑦& ≠ 𝑧&.”

Predicate Logic



Predicate Logic

• Propositional Logic
– Allows us to analyze complex propositions in 

terms of their simpler constituent parts (a.k.a. 
atomic propositions) joined by connectives

• Predicate Logic 
– Lets us analyze them at a deeper level by 

expressing how those propositions depend on 
the objects they are talking about



Predicate Logic

Adds two key notions to propositional logic
– Predicates

– Quantifiers



Predicate
– A function that returns a truth value, e.g.,

Cat(x) ::= “x is a cat”
Prime(x) ::= “x is prime”
HasTaken(x, y) ::= “student x has taken course y”
LessThan(x, y) ::= “x < y”
Sum(x, y, z) ::= “x + y = z”
GreaterThan5(x) ::= “x > 5”
HasNChars(s, n) ::= “string s has length n”

Predicates can have varying numbers of arguments 
and input types.   

Predicates



Domain of Discourse

For ease of use, we define one “type”/“domain” that we 
work over.  This non-empty set of objects is called the 
“domain of discourse”.

For each of the following, what might the domain be?
(1) “x is a cat”, “x barks”, “x ruined my couch”

(2) “x is prime”, “x = 0”, “x < 0”, “x is a power of two”

(3) “student x has taken course y”  “x is a pre-req for z”

“mammals” or “sentient beings” or “cats and dogs” or …

“numbers” or “integers” or “integers greater than 5” or …

“students and courses” or “university entities” or …


