CSE 311: Foundations of Computing

Lecture 2: More Logic, Equivalence \& Digital Circuits

Homework

- Homework released Saturdays, due on Fridays
- usually includes some material from Monday
- usually 6 problems (+1 feedback +1 extra credit)
- Consider doing 1 problem per day
- if the material is clear, problems hopefully take 20-30 minutes
- if the material is unclear, it will take longer to review, ask Qs, etc.
- much better to find out earlier in the week what is unclear
- HW1 is out now (a day early)
- Gradescope invites should go out on Monday

Last class: Atomic Propositions

Simplest units (words) in this logical language

Propositional Variables: p, q, r, s, \ldots

Truth Values:

- T for true
- F for false

Last class: Some Connectives \& Truth Tables

Negation (not)

\boldsymbol{p}	$\neg \boldsymbol{p}$
T	F
F	T

Conjunction (and)

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \wedge \boldsymbol{q}$
T	T	T
T	F	F
F	T	F
F	F	F

Disjunction (or)

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \vee \boldsymbol{q}$
T	T	T
T	F	T
F	T	T
F	F	F

Exclusive Or

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \oplus \boldsymbol{q}$
T	T	F
T	F	T
F	T	T
F	F	F

Last class: Implication

"If it's raining, then I have my umbrella"

\boldsymbol{p}	\boldsymbol{r}	$\boldsymbol{p} \rightarrow \boldsymbol{r}$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}

In English, we can also write
"I have my umbrella if it's raining."

```
p->r
```

(1) "I have collected all 151 Pokémon if I am a Pokémon master"
(2) "I have collected all 151 Pokémon only if I am a Pokémon master"
(1) "I have collected all 151 Pokémon if I am a Pokémon master"
(2) "I have collected all 151 Pokémon only if I am a Pokémon master"

These sentences are implications in opposite directions:
(1) "Pokémon masters have all 151 Pokémon"
(2) "People who have 151 Pokémon are Pokémon masters"

So, the implications are:
(1) If I am a Pokémon master, then I have collected all 151 Pokémon.
(2) If I have collected all 151 Pokémon, then I am a Pokémon master.
$p \rightarrow r$

Implication:
$-p$ implies r

- whenever p is true r must be true

p	r	$p \rightarrow r$
T	T	T
T	F	F
F	T	T
F	F	T

- if p then r
$-r$ if p
$-p$ only if r
$-p$ is sufficient for r
$-r$ is necessary for p

Biconditional: $p \leftrightarrow r$

- p if and only if r (p iff r)
- p implies r and r implies p
- p is necessary and sufficient for r

p	r	$p \leftrightarrow r$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}

Biconditional: $p \leftrightarrow r$

- p if and only if r (p iff r)
- p implies r and r implies p
- p is necessary and sufficient for r

p	r	$p \leftrightarrow r$	$p \rightarrow r$	$r \rightarrow p$	$(p \rightarrow r) \wedge(r \rightarrow p)$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	

Biconditional: $p \leftrightarrow r$

- p if and only if r (p iff r)
- p implies r and r implies p
- p is necessary and sufficient for r

p	r	$p \leftrightarrow r$	$p \rightarrow r$	$r \rightarrow p$	$(p \rightarrow r) \wedge(r \rightarrow p)$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

Back to Garfield...

```
q "Garfield has black stripes"
r "Garfield is an orange cat"
s "Garfield likes lasagna"
```

"Garfield has black stripes if he is an orange cat and likes lasagna, and he is an orange cat or does not like lasagna"

```
(q if (r and s)) and (r or (not s))
    \nabla
    (q"if" (r ^ s)) ^(r v \negs)
```


Back to Garfield...

```
q "Garfield has black stripes"
r "Garfield is an orange cat"
s "Garfield likes lasagna"
```

"Garfield has black stripes if he is an orange cat and likes lasagna, and he is an orange cat or does not like lasagna"

Analyzing the Garfield Sentence with a Truth Table

\boldsymbol{q}	\boldsymbol{r}	\boldsymbol{r}	$((\boldsymbol{q} \wedge \boldsymbol{r}) \rightarrow \boldsymbol{p}) \wedge(\boldsymbol{q} \vee \neg \boldsymbol{r})$
F	F	F	
F	F	T	
F	T	F	
F	T	T	
T	F	F	
T	F	T	
T	T	F	
T	T	T	

Analyzing the Garfield Sentence with a Truth Table

\boldsymbol{q}	\boldsymbol{r}	\boldsymbol{s}	$\boldsymbol{r} \vee \neg \boldsymbol{s}$	$(\boldsymbol{r} \wedge \boldsymbol{s}) \rightarrow \boldsymbol{q}$	$((\boldsymbol{r} \wedge \boldsymbol{s}) \rightarrow \boldsymbol{q}) \wedge(\boldsymbol{r} \vee \neg \boldsymbol{s})$
F	F	F			
F	F	T			
F	T	F			
F	T	T			
T	F	F			
T	F	T			
T	T	F			
T	T	T			

Analyzing the Garfield Sentence with a Truth Table

\boldsymbol{q}	\boldsymbol{r}	\boldsymbol{s}	$\neg \boldsymbol{s}$	$\boldsymbol{r} \vee \neg \boldsymbol{s}$	$\boldsymbol{r} \wedge \boldsymbol{s}$	$(\boldsymbol{r} \wedge \boldsymbol{s}) \rightarrow \boldsymbol{q}$	$((\boldsymbol{r} \wedge \boldsymbol{s}) \rightarrow \boldsymbol{q}) \wedge(\boldsymbol{r} \vee \neg \boldsymbol{s})$
F	F	F					
F	F	T					
F	T	F					
F	T	T					
T	F	F					
T	F	T					
T	T	F					
T	T	T					

Analyzing the Garfield Sentence with a Truth Table

\boldsymbol{q}	\boldsymbol{r}	\boldsymbol{s}	$\neg \boldsymbol{s}$	$\boldsymbol{r} \vee \neg \boldsymbol{s}$	$\boldsymbol{r} \wedge \boldsymbol{s}$	$(\boldsymbol{r} \wedge \boldsymbol{s}) \rightarrow \boldsymbol{q}$	$((\boldsymbol{r} \wedge \boldsymbol{s}) \rightarrow \boldsymbol{q}) \wedge(\boldsymbol{r} \vee \neg \boldsymbol{s})$
F	F	F	T	T	F	T	T
F	F	T	F	F	F	T	F
F	T	F	T	T	F	T	T
F	T	T	F	T	T	F	F
T	F	F	T	T	F	T	T
T	F	T	F	F	F	T	F
T	T	F	T	T	F	T	T
T	T	T	F	T	T	T	T

Converse, Contrapositive

Implication:

$$
p \rightarrow r
$$

Converse:

$$
r \rightarrow p
$$

Contrapositive:

$$
\neg r \rightarrow \neg p
$$

Inverse:

$\neg p \rightarrow \neg r$

Consider
$p: x$ is divisible by 2
r : x is divisible by 4

$p \rightarrow r$	
$r \rightarrow p$	
$\neg r \rightarrow \neg p$	
$\neg p \rightarrow \neg r$	

Converse, Contrapositive

Implication:

$p \rightarrow r$

Converse:

$$
r \rightarrow p
$$

Contrapositive:

$$
\neg r \rightarrow \neg p
$$

Inverse:

$$
\neg p \rightarrow \neg r
$$

Consider
$p: x$ is divisible by 2
$r: x$ is divisible by 4

$p \rightarrow r$	
$r \rightarrow p$	
$\neg r \rightarrow \neg p$	
$\neg p \rightarrow \neg r$	

	Divisible By 2	Not Divisible By 2
Divisible By 4		
Not Divisible By 4		

Converse, Contrapositive

Implication:

$p \rightarrow r$

Converse:

$$
r \rightarrow p
$$

Contrapositive:

$$
\neg r \rightarrow \neg p
$$

Inverse:

$$
\neg p \rightarrow \neg r
$$

Consider
$p: x$ is divisible by 2
r : x is divisible by 4

$p \rightarrow r$	
$r \rightarrow p$	
$\neg r \rightarrow \neg p$	
$\neg p \rightarrow \neg r$	

	Divisible By 2	Not Divisible By 2
Divisible By 4	$4,8,12, \ldots$	Impossible
Not Divisible By 4	$2,6,10, \ldots$	$1,3,5, \ldots$

Converse, Contrapositive

Implication:

$p \rightarrow r$

Converse:

$$
r \rightarrow p
$$

Consider
$p: x$ is divisible by 2
$r: x$ is divisible by 4

$p \rightarrow r$	\mathbf{F}
$r \rightarrow p$	\mathbf{T}
$\neg r \rightarrow \neg p$	\mathbf{F}
$\neg p \rightarrow \neg r$	\mathbf{T}

	Divisible By 2	Not Divisible By 2
Divisible By 4	$4,8,12, \ldots$	Impossible
Not Divisible By 4	$2,6,10, \ldots$	$1,3,5, \ldots$

Converse, Contrapositive

Implication:

$p \rightarrow r$
Converse:

$$
r \rightarrow p
$$

Contrapositive:

$$
\neg r \rightarrow \neg p
$$

$$
\neg p \rightarrow \neg r
$$

How do these relate to each other?

\boldsymbol{p}	\boldsymbol{r}	$\boldsymbol{p} \rightarrow \boldsymbol{r}$	$\boldsymbol{r} \rightarrow \mathbf{p}$	$\neg \mathbf{p}$	$\neg \boldsymbol{r}$	$\neg \mathbf{p} \rightarrow \neg \mathbf{r}$	$\neg \boldsymbol{r} \rightarrow \neg \mathbf{p}$
\mathbf{T}	\mathbf{T}						
T	F						
\mathbf{F}	\mathbf{T}						
F	F						

Converse, Contrapositive

Implication:

$p \rightarrow r$
Converse:
$r \rightarrow p$

Contrapositive:

$$
\neg r \rightarrow \neg p
$$

$$
\neg p \rightarrow \neg r
$$

An implication and it's contrapositive
have the same truth value!

\boldsymbol{p}	\boldsymbol{r}	$\mathbf{p} \rightarrow \boldsymbol{r}$	$\boldsymbol{r} \rightarrow \mathbf{p}$	$\neg \mathbf{p}$	$\neg \mathbf{r}$	$\neg \mathbf{p} \rightarrow \neg \mathbf{r}$	$\neg \boldsymbol{r} \rightarrow \neg \mathbf{p}$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

Application: Digital Circuits

Computing With Logic

- T corresponds to 1 or "high" voltage
- F corresponds to 0 or "low" voltage

Gates

- Take inputs and produce outputs (functions)
- Several kinds of gates
- Correspond to propositional connectives (most of them)

Last class: AND, OR, NOT Gates

p	q	out	
AND Gate	1 1	1	
$q-A N D-$ out	1	0	0
0	1	0	
0	0	0	

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

OR Gate

p	q	OUT
1	1	1
1	0	1
0	1	1
0	0	0

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

NOT Gate

p	OUT
1	0
0	1

p	$\neg p$
T	F
F	T

Combinational Logic Circuits

Values get sent along wires connecting gates

Combinational Logic Circuits

Values get sent along wires connecting gates

$$
\neg p \wedge(\neg q \wedge(r \vee s))
$$

Combinational Logic Circuits

Wires can send one value to multiple gates!

Combinational Logic Circuits

Wires can send one value to multiple gates!

$$
(p \wedge \neg q) \vee(\neg q \wedge r)
$$

Other Useful Gates

NAND

$$
\neg(p \wedge q)
$$

NOR

$$
\neg(p \vee q)
$$

XOR
$p \oplus q$
XNOR
$p \leftrightarrow q$

Tautologies!

Terminology: A compound proposition is a...

- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false
$p \vee \neg p$
$p \oplus p$
$(p \rightarrow r) \wedge p$

Tautologies!

Terminology: A compound proposition is a...

- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false
$p \vee \neg p$
This is a tautology. It's called the "law of the excluded middle". If p is true, then $p \vee \neg p$ is true. If p is false, then $p \vee \neg p$ is true.
$p \oplus p$
This is a contradiction. It's always false no matter what truth value p takes on.

$(p \rightarrow r) \wedge p$

This is a contingency. When $p=T, r=T,(T \rightarrow T) \wedge T$ is true.
When $p=T, r=F,(T \rightarrow F) \wedge T$ is false.

Logical Equivalence

$$
\begin{aligned}
A= & B \text { means } A \text { and } B \text { are identical "strings": } \\
& -p \wedge r=p \wedge r \\
& -p \wedge r \neq r \wedge p
\end{aligned}
$$

Logical Equivalence

$A=B$ means A and B are identical "strings":
$-p \wedge r=p \wedge r$
These are equal, because they are character-for-character identical.
$-p \wedge r \neq r \wedge p$
These are NOT equal, because they are different sequences of characters. They "mean" the same thing though.
$A \equiv B$ means A and B have identical truth values:
$-p \wedge r \equiv p \wedge r$
$-p \wedge r \equiv r \wedge p$
$-p \wedge r \neq r \vee p$

Logical Equivalence

$A=B$ means A and B are identical "strings":
$-p \wedge r=p \wedge r$
These are equal, because they are character-for-character identical.
$-p \wedge r \neq r \wedge p$
These are NOT equal, because they are different sequences of characters. They "mean" the same thing though.
$A \equiv B$ means A and B have identical truth values:
$-p \wedge r \equiv p \wedge r$
Two formulas that are equal also are equivalent.
$-p \wedge r \equiv r \wedge p$
These two formulas have the same truth table!
$-\boldsymbol{p} \wedge \boldsymbol{r} \neq \boldsymbol{r} \vee \mathrm{p}$
When $p=\mathrm{T}$ and $r=\mathrm{F}, p \wedge r$ is false, but $p \vee r$ is true!

$A \leftrightarrow B$ vs. $A \equiv B$

$A \leftrightarrow B$ is a proposition that may be true or false depending on the truth values of A and B.
$A \equiv B$ is an assertion over all possible truth values that A and B always have the same truth values.
$A \equiv B$ and $(A \leftrightarrow B) \equiv T$ have the same meaning.

