
CSE 311: Foundations of Computing I
Homework 8 (due December 10th at 11:00 PM)

Directions: Write up carefully argued solutions to the following problems. Your solution should be clear
enough that it should explain to someone who does not already understand the answer why it works. However,
you may use results from lecture, the theorems handout, and previous homeworks without proof.

1. Feedback to Where You Once Belonged (0 points)
Approximately how much time (in minutes) did you spend on each problem of this homework? Were any
problems especially difficult or especially interesting?

2. Design Intervention [Online] (10 points)
For each of the following, create an NFA that recognizes exactly the language described.

(a) [5 Points] Binary strings with at least three 1s or end with 000.

(b) [5 Points] Binary strings with at least three 1s and end with 000.
Hint: This can be done without the product construction.

Submit and check your answers to this question here:

https://grin.cs.washington.edu

Think carefully about your answer to make sure it is correct before submitting.
You have only 5 chances to submit a correct answer.

3. Get Your Machine Fix [Online] (16 points)
Use the algorithm from lecture to convert each of the following NFAs to DFAs.

(a) [8 Points] The NFA below:
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(b) [8 Points] The NFA below, which we get by applying the construction described in class1 to the regular
expression (ε ∪ 0)(1 ∪ 00)∗:
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Submit and check your answers to this question here:

https://grin.cs.washington.edu

Think carefully about your answer to make sure it is correct before submitting.
You have only 8 chances to submit a correct answer.

4. Expression Is the Better Part of Valor (10 points)
Use the algorithm from lecture to convert each of the following regular expressions into NFAs that accept the
same language. You may skip adding ε-transitions for concatenation if they are obviously unnecessary, but
otherwise, you should precisely follow the construction from lecture.

(a) [5 Points] 11(0 ∪ 10)∗11

(b) [5 Points] ((0 ∪ 10)∗11)∗

5. A Whole New Small Game (16 points)
Use the algorithm from lecture to minimize the each of the following DFAs.

For each step of the algorithm, write down the groups of states, which group was split in that step and the
reason for splitting that group. At the end, write down the minimized DFA, with each state named by the set
of states of the original machine that it represents (e.g., “B,C” if it represents B and C).

(a) [8 Points]
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1The only simplification performed was using three states rather than four to represent the sub-expression 00.
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(b) [8 Points]
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6. Just Irregular Guy (20 points)
Use the method described in lecture to prove that each of the following languages is not regular.

(a) [10 Points] All binary strings in the set {0m1n0n+2m : m,n ≥ 0}.

(b) [10 Points] All strings over {0, 1, 2} of the form x2y, with x, y ∈ {0, 1}∗ and y a subsequence of xR

7. Ruled With an Iron List (38 points)
Recall the definition of linked lists of numbers from lecture:

Bases Step: null ∈ List
Recursive Step: For any x ∈ R, if L ∈ List, then Node(x, L) ∈ List.

The following parts also refer to the functions concat and rev, which concatenate and reverse these lists,
respectively. Those functions were formally defined in HW7 problem 7 (“Up the Ladder to the Proof”).

(a) [20 Points] Prove that rev(concat(L,R)) = concat(rev(R), rev(L)), for all lists L and R, by structural
induction on L. You may use, without proof, the following facts about concat:

• Identity: concat(A, null) = A for all A ∈ List
• Associativity: concat(concat(A,B), C) = concat(A, concat(B,C)) for all A,B,C ∈ List

(b) [16 Points] Use part (a) to prove that rev(rev(L)) = L for all lists L by structural induction.

(c) [2 Points] Use part (b) to prove that, if L = rev(R), then R = rev(L).
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8. Extra Credit: Strings to Mind (0 points)
Suppose we want to determine whether a string x of length n contains a string y = y1y2 . . . ym with m � n.
To do so, we construct the following NFA:

s0 s1 s2 ... sm−1 sm
y1 y2 y3 ym−1 ym

0, 1 0, 1

(where the . . . includes states s3, . . . , sm−2). We can see that this NFA matches x iff x contains the string y.
We could check whether this NFA matches x using the parallel exploration approach, but doing so would

take O(mn) time, no better than the obvious brute-force approach for checking if x contains y. Alternatively,
we can convert the NFA to a DFA and then run the DFA on the string x. A priori, the number of states in
the resulting DFA could be as large as 2m, giving an Ω(2m + n) time algorithm, which is unacceptably slow.
However, below, you will show that this approach can be made to run in O(m2 + n) time.

(a) Consider any subset of states, S, found while converting the NFA above into a DFA. Prove that, for each
1 ≤ j < m, knowing sj ∈ S functionally determines whether si ∈ S or not for each 1 ≤ i < j.

(b) Explain why this means that the number of subsets produced in the construction is at most 2m.

(c) Explain why the subset construction thus runs in only O(m2) time (assuming the alphabet size is O(1)).

(d) How many states would this reduce to if we then applied the state minimization algorithm?

(e) Explain why part (c) leads to a bound of O(m2 + n) for the full algorithm (without state minimization).

(f) Briefly explain how this approach can be modified to count (or, better yet, find) all the substrings matching
y in the string x with the same overall time bound.

Note that any string matching algorithm takes Ω(m+ n) = Ω(n) time in the worst case since it must read the
entire input. Thus, the above algorithm is optimal whenever m2 = O(n), or equivalently, m = O(

√
n), which

is the case for normal inputs circumstances.
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