
CSE 311: Foundations of Computing I
Homework 5 (due November 5th at 11:00 PM)

Directions: Write up carefully argued solutions to the following problems. Your solution should be clear
enough that it should explain to someone who does not already understand the answer why it works. However,
you may use results from lecture, the theorems handout, and previous homeworks without proof.

1. It’s Feedback Time (0 points)
Approximately how much time (in minutes) did you spend on each problem of this homework? Were any
problems especially difficult or especially interesting?

2. A Wink and a Mod (12 points)
Compute each of the following using Euclid’s Algorithm. Show your intermediate results, both as a sequence
of recursive calls and in tableau form (showing just the divisions performed, as shown in lecture).

(a) gcd(344, 124)

(b) gcd(56, 252)

(c) gcd(232 − 1, 21 − 1)

3. The Mod Couple (24 points)
(a) [10 Points] Compute the multiplicative inverse of 15 modulo 101 using the Extended Euclidean Algorithm.

Your answer should be a number between 0 and 100. Show your work in tableau form (the divisions
performed, the equations for the remainders, and the sequence of substitutions).

(b) [6 Points] Find all integer solutions x ∈ Z to the equation

15x ≡101 4

It is not sufficient just to state the answer. You need to prove that your answer is correct.

(c) [4 Points] Prove that there are no integer solutions to the equation

7x ≡21 16

Note: this does not follow from (just) the fact that 7 does not have a multiplicative inverse modulo 21.
That argument, if true, would apply to the equation 7x ≡21 14, which actually does have solutions (e.g.,
x = 2)! Hence, a different argument is required to show that this equation has no integer solutions.
Hint: By De Morgan, there does not exist a solution if and only if every x ∈ Z is not a solution. Hence, one
way to prove this is to assume that x satisfies the above equation and establish that this is a contradiction.
That would show that the assumption (that x was a solution) is false.

(d) [4 Points] Prove that all solutions to the equation in part (b) are also solutions to

50x+ 8 ≡101 5x+ 20
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4. Mod Squad (12 points)
We say an integer is palindromic if its digits, when written in decimal (with no leading zeros), form a palindrome.
Show that every palindromic integer with an even number of digits is divisible by 11. (Do not use induction.)

Hint: 10 ≡11 −1

5. Modding Off (12 points)
(a) [10 Points] Compute 3298 mod 100 using the efficient modular exponentiation algorithm.

Show all intermediate results.

(b) [1 Point] How many multiplications does the algorithm use for this computation? (Assume that we do
not need to perform a multiplication to calculate 31 = 3 since we know that x1 = x for any x.)

(c) [1 Point] The integer 3298 has 143 digits, so calculating 3298 mod 100 by first calculating 3298 and then
reducing it modulo 100 would require storing a 143-digit number.
If we calculate 3298 mod 100 as in part (a), with each of the modular multiplications (a × b) mod 100
performed by calculating the integer a× b and then reducing it modulo 100, what is the largest number
of digits that could appear in any number?

6. Induction Worker (20 points)
Prove, by induction, that n3 + 2n is divisible by 3 for any positive integer n.

7. Alien Induction (20 points)
Prove that for all integers n with n ≥ 1, we have n · 4n ≤ (n+ 8)!, where k! is defined for any k ≥ 1 to be the
product k · (k − 1) · . . . · 2 · 1. (For example, 5! = 5 · 4 · 3 · 2 · 1 = 120.) Note that (k + 1)! = (k + 1) · k!.

8. Extra Credit: Walk Like an Encryption (0 points)
We know that we can reduce the base of an exponent modulo m : ak ≡m (a mod m)k. But the same is not
true of the exponent! That is, we cannot write ak ≡m ak mod m. This is easily seen to be false in general.
Consider, for instance, that 210 mod 3 = 1 but 210 mod 3 mod 3 = 21 mod 3 = 2.

The correct law for the exponent is more subtle. We will prove it in steps....
(a) Let R = {n ∈ Z : 1 ≤ n ≤ m− 1 ∧ gcd(n,m) = 1}. Define the set aR = {ax mod m : x ∈ R}. Prove

that aR = R for every integer a > 0 with gcd(a,m) = 1.

(b) Consider the product of all the elements in R modulo m and the elements in aR modulo m. By comparing
those two expressions, conclude that, for all a ∈ R, we have aφ(m) ≡m 1, where φ(m) = |R|.

(c) Use the last result to show that, for any b ≥ 0 and a ∈ R, we have ab ≡m ab mod φ(m).

(d) Finally, prove the following two facts about the function φ above. First, if p is prime, then φ(p) = p− 1.
Second, for any primes a and b with a 6= b, we have φ(ab) = φ(a)φ(b). (Or slightly more challenging:
show this second claim for all positive integers a and b with gcd(a, b) = 1.)

The second fact of part (d) implies that, if p and q are primes, then φ(pq) = (p− 1)(q − 1). That along with
part (c) prove of the final claim from lecture about RSA, completing the proof of correctness of the algorithm.
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