
CSE 311: Foundations of Computing I
Homework 3 (due Friday, October 22nd at 11:00 PM)

Directions: Write up carefully argued solutions to the following problems. Your solution should be clear
enough that it should explain to someone who does not already understand the answer why it works. However,
you may use results from lecture, the theorems handout, and previous homeworks without proof.

1. That’s What I’m Talking About (0 points)
Approximately how much time (in minutes) did you spend on each problem of this homework? Were any
problems especially difficult or especially interesting?

2. Asking For a Friend (18 points)
For each of the following English statements, (i) translate it into predicate logic, (ii) write the negation of that
statement in predicate logic with the negation symbols pushed as far in as possible, and then (iii) translate the
result of (ii) back to (natural) English.

Let the domain of discourse be all people on Facebook. You should use only the predicate Friend(x, y),
which says that x and y are friends, and the predicates x = y and x 6= y, which say whether or not x and y are
the same persons. You may assume that friendship is a symmetric relationship, so Friend(x, y) and Friend(y, x)
are the same. You can use constants to refer to specific people such as the “Bob” in the next example.

Example: Bob is friends with someone else.
i. ∃x ((x 6= Bob) ∧ Friend(x,Bob)) — note the domain restriction when negating

ii. ∀x ((x 6= Bob) → ¬Friend(x,Bob))

iii. Everyone else is not friends with Bob.

(a) [9 Points] Two people have Bob as a mutual friend only if they are also friends.

(b) [9 Points] A group of three people are all friends with each other.

3. What Does That Prove? (10 points)
Theorem: Show that s follows from (¬q ∨ r) → ¬p, ¬p → ¬r and r ∨ (q ∧ s).

(The rule “Proof by Cases”, used here, is defined in Problem 5.)
“Proof”:

1. (¬q ∨ r) → ¬p Given
2. (¬q ∨ ¬¬r) → ¬p Double Negation: 1
3. ¬(q ∧ ¬r) → ¬p DeMorgan’s Law: 2
4. p → (q ∧ ¬r) Contrapositive: 3
5. p → ¬r ∧ Elim: 4
6. ¬p → ¬r Given
7. ¬r Proof by cases: 5, 6
8. r ∨ (q ∧ s) Given
9. q ∧ s ∨ Elim: 8, 7

10. s ∧ Elim: 9

1

(a) [6 Points] What is the most significant error in this proof? Give the line and briefly explain why it’s wrong.

(b) [4 Points] Explain how to fix the proof by replacing the line with the most significant error with a correct
inference of the same fact. (Your replacement may need multiple lines to prove that fact.)

4. Burden of Proof (26 points)
Write formal proofs of each of the following.

Feel free to use this web site again to complete the problem. Click on "CSE 311 HW3" to create a new
project that is preloaded with a file for each of the parts below. Once you have solved each part, take a
screenshot of your completed solution and include it in your submission. Some additional notes on usage:

• The up/down arrows indicate whether the reasoning is forward (down) or backward (up).

• The “Intro ∨” and “Direct Proof” rules can only be used backward at present.

• The web site only allows a single premise, so for parts with multiple premises, it will have a single premise
that is the conjugation of all the stated ones. Get the individual premises using “Elim ∧”.

(a) [6 Points] Given r ∧ s, r → t, and t → (u ∧ v), it follows that s ∧ v.

(b) [6 Points] Given r → s and ¬r → s, it follows that s ∨ t is true.

(c) [6 Points] Given p → (r ∧ ¬s), s ∨ t, and (r ∧ t) → u, it follows that p → u.

(d) [8 Points] Given p → ((s → t) ∧ (t → s)), it follows that ((p ∧ s) → (p ∧ t)) ∧ ((p ∧ t) → (p ∧ s)).

5. Proof Positive (12 points)
In this problem, we will consider the following, new inference rule:

Proof By Cases

A ∨B A → C B → C

∴ C

This rule says that, if we know that either A or B is true and that both A implies C and B implies C, then it
follows that C is true. If it is A that is true, then we get that C is true by Modus Ponens and likewise if B is
true instead. This is a valid rule of inference and you are free to use it outside of this problem as well.

(Note that you proved the special case B = ¬A in part (b) of the previous problem! In that case, we do
not need the assumption A ∨B = A ∨ ¬A, as that is always true — it is the Law of the Excluded Middle.)

(a) [6 Points] Use the Proof By Cases rule to prove the following. Given r ∧ (s ∨ t), s → (t ∧ u), and
t → (t ∧ u), it follows that r ∧ (u ∨ v). (You may not use Elim ∨.)

(b) [6 Points] Prove that the “Elim ∨” rule follows from “Proof By Cases”. Specifically, use the Proof by
Cases rule to prove that, given p ∨ r and ¬p, it follows that r is true. (You may not use Elim ∨.)

2

https://cozyide.web.app

6. Something to Prove (18 points)
Let P (x, y) and Q(z) be predicates defined in some fixed domain of discourse.

(a) [6 Points] Prove that, given ∃x ∀y P (x, y), it follows that ∀y ∃xP (x, y).
(Note that we showed in class that the converse of this statement does not hold!)

(b) [6 Points] Let c be a fixed object. Prove ¬Q(c) given ∀x (Q(x) → ∀y P (x, y)) and ¬P (c, c).

(c) [6 Points] Let c be a fixed object. Prove that, given ∀y P (c, y) and ∀x (Q(x) → P (x, c)), it follows that
∀x (Q(x) → ∃y (P (x, y) ∧ P (y, x))).

7. Back to Square One (16 points)
Recall that an integer n is a square iff there exists a k ∈ Z such that n = k2. Formally, with our domain of
discourse as the integers, we can define Square(n) := ∃k (n = k2).

(a) [2 Points] Write the following claim in Predicate Logic: if integers n and m are squares, then nm is a
square. (Be careful!)

(b) [10 Points] Give a formal proof of the claim from part (a). In addition to the inference rules discussed in
class, you can also rewrite an algebraic expression to equivalent ones using the rule "Algebra". (E.g., you
could write “a(b+ 1)− a = ab” with Algebra as the rule / explanation.)

(c) [4 Points] Translate your formal proof from part (b) into an English proof.

8. Extra Credit: A Step In the Right Direction (0 points)
In this problem, we will extend the machinery we used in HW1’s extra credit problem in two ways. First, we will
add some new instructions. Second, and more importantly, we will add type information to each instruction.

Rather than having a machine with single bit registers, we will imagine that each register can store more
complex values such as

Primitives These include values of types int, float, boolean, char, and String.

Pairs of values The type of a pair is denoted by writing “×” between the types of the two parts. For example,
the pair (1, true) has type “int × boolean” since the first part is an int and the second part is a boolean.

Functions The type of a function is denoted by writing a “→” between the input and output types. For
example, a function that takes an int as argument and returns a String is written “int → String”.

We add type information, describing what is stored in each each register, in an additional column next to the
instructions. For example, if R1 contains a value of type int and R2 contains a value of type int → (String× int),
i.e., a function that takes an int as input and returns a pair containing a String and an int, then we could write
the instruction

R3 := CALL(R1, R2) String × int
which calls the function stored in R2, passing in the value from R1 as input, and stores the result in R3, and
write a type of “String × int” in the right column since that is the type that is now stored in R3.

In addition to CALL, we add new instructions for working with pairs. If R1 stores a pair of type String× int,
then LEFT(R1) returns the String part and RIGHT(R1) returns the int part. If R2 contains a char and R3

contains a boolean, then PAIR(R2, R3) returns a pair of containing a char and a boolean, i.e., a value of type
char × boolean.

3

(a) Complete the following set of instructions so that they compute, in the final register assigned, a value of
type float × boolean:

R1 int × float
R2 int → String
R3 String → (char × boolean)
R4 :=

The first three lines show the types already stored in registers R1, R2, and R3 at the start, before your
instructions are executed. You are free to use the values in those registers in later instructions.

Since we have unlimited space, store into a new register on each line. Do not reassign any registers.

(b) Compare the types listed next to these instructions to the propositions listed on the lines of your proof
in Problem 4(a). Give a collection of text substitutions, such as replacing all instances of “r” by “int”
(these can include both atomic propositions and operators), that will make the sequence of propositions
in Problem 4(a) exactly match the sequence of types in Problem 8(a). (You may need to change your
solution to Problem 8(a) slightly to make this work.)

(c) Now, let’s add another way to form new types. If A and B are types, then A + B will be the type
representing values that can be of either type A or type B. For example, String + int would be a type of
values that can be strings or integers.

To work with this new type, we need some new instructions. First, if R1 has type A, then the
instruction CASE(R1) returns the same value but now having type A + B. (Note that we can pick any
type B that we want here.) Second, if R2 stores a value of type A + B, R3 stores a function of type
A → C (a function taking an A as input and returning a value of type C), and R4 stores a function of
type B → C, then the instruction SWITCH(R2, R3, R4) returns a value of type C: it looks at the value in
R2, and, if it is of type A, it calls the function in R3 and returns the result, whereas, if it is of type B, it
calls the function in R4 and returns the result. In either case, the result is something of type C.

Complete the following set of instructions so that they compute, in the final register assigned, a value
of type int × (char + boolean):

R1 int × (float + String)
R2 float → (String × char)
R3 String → (String × char)
R4 :=

The first three lines again show the types of values already stored in registers R1, R2, and R3. As before,
do not reassign any registers. Use a new register for each instruction’s result.

(d) Compare the types listed next to these instructions to the propositions listed on the lines of your proof
in Problem 5(a). Give a collection of text substitutions, such as replacing all instances of “r” by “int”
(these can include both atomic propositions and operators), that will make the sequence of propositions
in Problem 5(a) exactly match the sequence of types in Problem 8(c). (You may need to change your
solution to Problem 8(c) slightly to make this work.)

(e) Now that we see how to match up the propositions in our earlier proofs with types in the code above,
let’s look at the other two columns. Describe how to translate each of the rules of inference used in the
proofs from both Problem 4(a) and 5(a) so that they turn into the instructions in Problem 8(a) and 8(c).

(f) One of the important rules not used in Problems 4(a) or 5(a) was Direct Proof. What new concept would
we need to introduce to our assembly language so that the similarities noted above apply could also to
proofs that use Direct Proof?

4

