
CSE 311: Foundations of Computing I
Homework 1 (due Friday, October 8th at 11:00 PM)

Directions: Write up carefully argued solutions to the following problems. Your solution should be clear
enough that it should explain to someone who does not already understand the answer why it works. However,
you may use results from lecture, the theorems handout, and previous homeworks without proof.

1. Feedback (0 points)
How much time (in minutes) did you spend on each problem of this homework? This information is useful for
us to calibrate the difficulty of the problems for future offerings of this course.

2. I Can’t Blab Such Blibber Blubber! (30 points)
Translate these English statements into logic, making the atomic propositions as simple as possible and exposing
as much of the logic via symbols as possible.

(a) [5 Points] Define a set of at most three atomic propositions. Then, use them to translate “If you do not
pay attention in class or start the assignment the day it is due, then you will not complete it on time.”

(b) [10 Points] Define a set of at most three atomic propositions. Then, use them to translate all of these
sentences about saving the village:

i) If the dragons do not attack, the town will be safe.
ii) The town will not be safe unless the wizards are awake.
iii) The town will not be safe if and only if the dragons attack and the wizards are not awake.

(c) [10 Points] Define a set of at most five atomic propositions. Then, use them to translate all of these
sentences about unicorns:

i) If it has four hooves and says “neigh”, then it either has a horn or it doesn’t.
ii) It has four hooves and says “neigh” if it is a horse or unicorn.
iii) Only if it has four hooves, says “neigh”, and has no horn is it a horse.

(d) [5 Points] Your professor says “You will get participation credit if you come to class and do not fall asleep.”
Define a set of at most three atomic propositions. Then, use them give two different (i.e., non-equivalent)
translations of the sentence that it is reasonable to believe might represent what the professor means. (If
it is not obvious why those are reasonable, you can add some explanation.)
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3. Thing One and Thing Two (20 points)
Use truth assignments (i.e., an assignment of a truth value to each variable) to demonstrate that the two
propositions in each part are not logically equivalent (i.e., they don’t always have the same truth value).

(a) [5 Points] (p ∨ r) ∧ p vs. r ∨ (p ∧ r)

(b) [5 Points] p → (r → s) vs. (p → r) → s

(c) [5 Points] p → (r ⊕ s) vs. (p⊕ r) → (p⊕ s)

(d) [5 Points] (p → r) → (r → p) vs. (r → p) → (p → r)

4. You Can Make a Quick Trick Lock Stack (10 points)
Searching for a secure encryption function, you find a GitHub repo with three implementations: A, B, and C.
The documentation in the repo tells you that only one of the implementations is secure — the other two
are not! All three implementations are obfuscated, so you cannot tell which one is secure by examining the
source. However, each implementation has a documentation sentence:

A “This implementation (A) is not secure.”

B “This implementation (B) is not secure.”

C “Implementation A is secure.”

Unfortunately, the documentation in the repo also tells you that only one documentation sentence is true
— the other two are false!

Which implementation is the secure one? (Not necessarily the one whose documentation sentence is true!)
Justify your answer by considering each possibility for which implementation is the secure one, and showing
which of the sentences would be true in each case. Only one possibility should match the description above.

5. One, Two Three... How Many Fingers Do I See? (10 points)
Find a compound proposition involving the propositional variables r, s, and t that is true precisely when a
majority of r, s, and t are true. (I.e., a proposition which is true in that case and false in all other cases.) Use
a truth table to show that your answer works.

6. Would You, Could You, With a Gate? (10 points)
(a) Write a table showing the values of the boolean function B(r, s, t) defined as follows. If r and s are both

1, then B(r, s, t) = t. If r = 1 but s = 0, then B(r, s, t) = t. In all other cases, B(r, s, t) = 1.

(b) Draw the diagram of a circuit with three inputs (r, s, and t) that computes the function B(r, s, t) using
at most one of each of the following gates:

AND OR XOR NOT

Hint: Start by trying to build circuits for the top half and bottom half of the table separately (pretending
there were 0s in the other half). Then, try combining those circuits with an additional gate to get the
correct output for the whole table.
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7. Aunt Annie’s Alligator (20 points)
Define the three-input “A” gate by the rules A(F, r, s) = r and A(T, r, s) = s. In words, when the first input
is F , the output of the A gate has the same value as its second input (r), and when the first input is T , the
output of the A gate has the same value as its third input (s). For example, we have A(F, T, F ) = T since
output is the same as the second input and A(T, T, F ) = F since the output is the same as the third input.

Show how to implement the following gates using only A’s. You are allowed to use the constants T and F
and the inputs a and b, as many times as you want, but you cannot use other gates like AND, OR, and NOT.

You must justify your answers if they are not obvious (to the grader).
(a) [4 Points] ¬a, using only one A gate

(b) [4 Points] a ∨ b, using only one A gate

(c) [4 Points] a ∧ b, using only one A gate

(d) [4 Points] a → b, using only one A gates

(e) [4 Points] ¬a ∧ ¬b, using at most two A gates

8. EXTRA CREDIT: XNORing (0 points)
Imagine a computer with a fixed amount of memory. We give names, R1, R2, R3, . . . , to each of the locations
where we can store data and call these “registers.” The machine can execute instructions, each of which reads
the values from some register(s), applies some operation to those values to calculate a new value, and then
stores the result in some register. For example, the instruction R4 := AND(R1, R2) would read the values stored
in R1 and R2, compute the logical and of those values, and store the result in register R4.

We can perform more complex computations by using a sequence of instructions. For example, if we start
with register R1 containing the value of the proposition p and R2 containing the value of the proposition q,
then the following instructions:

1. R3 := NOT(R1)

2. R4 := AND(R1, R2)

3. R4 := OR(R3, R4)

would leave R4 containing the value of the expression ¬p ∨ (p ∧ q). Note that this last instruction reads from
R4 and also stores the result into R4. This is allowed.

Now, assuming p is stored in register R1 and q is stored in register R2, give a sequence of instructions that

• only uses the XNOR operation (no AND, OR, etc.),

• only uses registers R1 and R2 (no extra space), and

• ends with q stored in R1 and p stored in R2 (i.e., with the original values in R1 and R2 swapped).
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