CSE 311: Foundations of Computing

Lecture 28: Undecidability, Reductions, and Turing Machines

Final Homework Assignment

- Due Wednesday, March 18 11:00 pm
- Submit in Gradescope no grinch
 - Worth > regular homework and < midterm</p>
- For individual questions for me or the CSE 311 staff between now and then use the Ed discussion board.
 - Mark the "Private" checkbox near the bottom of the New Thread creation page

- To prove a set A countable you must show
 - There exists a listing x_1, x_2, x_3, \dots such that every element of A is in the list.
- To prove a set **B** uncountable you must show
 - For every listing x_1, x_2, x_3 , ... there exists some element in B that is not in the list.
 - The diagonalization proof shows how to describe a missing element d in B based on the listing $x_1, x_2, x_3, ...$. *Important:* the proof produces a d no matter what the listing is.

Last time: Undecidability of the Halting Problem

CODE(P) means "the code of the program **P**"

The Halting Problem

Given: - CODE(**P**) for any program **P** - input **x**

Output: true if P halts on input x false if P does not halt on input x

Theorem [Turing]: There is no program that solves the Halting Problem

Proof: By contradiction.

Assume that a program **H** solving the Halting program does exist. Then program **D** must exist

The Halting Problem isn't the only hard problem

 Can use the fact that the Halting Problem is undecidable to show that other problems are undecidable

General method:

Prove that if there were a program deciding B then there would be a way to build a program deciding the Halting Problem.

"B decidable → Halting Problem decidable"

Contrapositive:

"Halting Problem undecidable \rightarrow B undecidable"

Therefore **B** is undecidable

Last time: A CSE 141 assignment

Students should write a Java program that:

- Prints "Hello" to the console
- Eventually exits

Gradelt, Practicelt, etc. need to grade the students.

How do we write that grading program?

WE CAN'T: THIS IS IMPOSSIBLE!

Last Time: A related undecidable problem

- HelloWorldTesting Problem:
 - Input: CODE(Q) and x
 - Output:

True if Q outputs "HELLO WORLD" on input xFalse if Q does not output "HELLO WORLD" on input x

- **Theorem:** The HelloWorldTesting Problem is undecidable.
- Proof idea: Show that if there is a program T to decide HelloWorldTesting then there is a program H to decide the Halting Problem for code(P) and x.

Last time: The HaltsNoInput Problem

- Input: CODE(R) for program R
- Output: True if R halts without reading input False otherwise.

Theorem: HaltsNoInput is undecidable

General idea "hard-coding the input":

Show how to use CODE(P) and x to build CODE(R) so
 P halts on input x ⇔ R halts without reading input

• The impossibility of writing the CSE 141 grading program follows by combining the ideas from the undecidability of HaltsNoInput and HelloWorld.

More Reductions

- Can use undecidability of these problems to show that other problems are undecidable.
- For instance:

EQUIV(P,Q):

Trueif P(x) and Q(x) have the sameI/O behavior for every input xFalseotherwise

Rice's theorem

Not every problem on programs is undecidable! Which of these is decidable?

Input CODE (P) and x				
Output: true	if P prints "ERROR" on input x			
after less than 100 steps				
false otherwise				
 Input CODE(P) and x 				
Output: true	if P prints "ERROR" on input x			
	after more than 100 steps			

Rice's Theorem (a.k.a. Compilers ARE DIFFICULT Any "non-trivial" property of the input-output behavior of Java programs is undecidable. We know can answer almost any question about

• Regular Expressions, DFAs, NFAs, FSMs

But many problems about CFGs are undecidable!

- Is there any string that two CFGs both accept?
- Do two CFGs accept the same language?
- Does a CFG accept every string?

Computers and algorithms

- Does Java (or any programming language) cover all possible computation? Every possible algorithm?
- There was a time when computers were people who did calculations on sheets paper to solve computational problems

• Computers as we known them arose from trying to understand everything these people could do.

Before Java

1930's:

How can we formalize what algorithms are possible?

- Turing machines (Turing, Post)
 - basis of modern computers
- Lambda Calculus (Church)
 - basis for functional programming, LISP
- µ-recursive functions (Kleene)
 - alternative functional programming basis

Church-Turing Thesis:

Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

Evidence

- Intuitive justification
- Huge numbers of models based on radically different ideas turned out to be equivalent to TMs

- Finite Control
 - Brain/CPU that has only a finite # of possible "states of mind"
- Recording medium
 - An unlimited supply of blank "scratch paper" on which to write & read symbols, each chosen from a finite set of possibilities
 - Input also supplied on the scratch paper

• Focus of attention

- Finite control can only focus on a small portion of the recording medium at once
- Focus of attention can only shift a small amount at a time

Recording medium

- An infinite read/write "tape" marked off into cells
- Each cell can store one symbol or be "blank"
- Tape is initially all blank except a few cells of the tape containing the input string
- Read/write head can scan one cell of the tape starts on input
- In each step, a Turing machine
 - 1. Reads the currently scanned cell
 - 2. Based on current state and scanned symbol
 - i. Overwrites symbol in scanned cell
 - ii. Moves read/write head left or right one cell
 - iii. Changes to a new state
- Each Turing Machine is specified by its finite set of rules

	_	0	1
s ₁	(1, L, s ₃)	(1, L, s ₄)	(0, R, s ₂)
S ₂	(0, R, s ₁)	(1, R, s ₁)	(0, R, s ₁)
S ₃			
S ₄			

UW CSE's Steam-Powered Turing Machine

Original in Sieg Hall stairwell

Ideal Java/C programs:

- Just like the Java/C you're used to programming with, except you never run out of memory
 - Constructor methods always succeed
 - malloc in C never fails

Equivalent to Turing machines except a lot easier to program:

- Turing machine definition is useful for breaking computation down into simplest steps
- We only care about high level so we use programs

Turing's big idea part 1: Machines as data

Original Turing machine definition:

- A different "machine" M for each task
- Each machine M is defined by a finite set of possible operations on finite set of symbols
- So... M has a finite description as a sequence of symbols, its "code", which we denote <M>

You already are used to this idea with the notion of the program code or text but this was a new idea in Turing's time.

Turing's big idea part 2: A Universal TM

- A Turing machine interpreter **U**
 - On input <M> and its input x,
 - ${\bf U}$ outputs the same thing as ${\bf M}$ does on input ${\bf x}$
 - At each step it decodes which operation M would have performed and simulates it.
- One Turing machine is enough
 - Basis for modern stored-program computer
 Von Neumann studied Turing's UTM design

Takeaway from undecidability

- You can't rely on the idea of improved compilers and programming languages to eliminate major programming errors
 - truly safe languages can't possibly do general computation
- Document your code
 - there is no way you can expect someone else to figure out what your program does with just your code; since in general it is provably impossible to do this!

We've come a long way!

- Propositional Logic.
- Boolean logic and circuits.
- Boolean algebra.
- Predicates, quantifiers and predicate logic.
- Inference rules and formal proofs for propositional and predicate logic.
- English proofs.
- Set theory.
- Modular arithmetic.
- Prime numbers.
- GCD, Euclid's algorithm and modular inverse

We've come a long way!

- Induction and Strong Induction.
- Recursively defined functions and sets.
- Structural induction.
- Regular expressions.
- Context-free grammars and languages.
- Relations and composition.
- Transitive-reflexive closure.
- Graph representation of relations and their closures.

- DFAs, NFAs and language recognition.
- Product construction for DFAs.
- Finite state machines with outputs at states.
- Minimization algorithm for finite state machines
- Conversion of regular expressions to NFAs.
- Subset construction to convert NFAs to DFAs.
- Equivalence of DFAs, NFAs, Regular Expressions
- Method to prove languages not accepted by DFAs.
- Cardinality, countability and diagonalization
- Undecidability: Halting problem and evaluating properties of programs.

- Foundations II (CSE 312)
 - Fundamentals of counting, discrete probability, applications of randomness to computing, statistical algorithms and analysis
 - Ideas critical for machine learning, algorithms
- Data Abstractions (CSE 332)
 - Data structures, a few key algorithms, parallelism
 - Brings programming and theory together
 - Makes heavy use of induction and recursive defns

Complexity Theory (in CSE 431 and beyond)

Not just what can be computed at all...

How about what can be computed *efficiently*?

A rich, interesting, and important topic.

Thank you!

