
CSE 311: Foundations of Computing

Lecture 28: Undecidability, Reductions, and Turing 

Machines



Final Homework Assignment

• Due Wednesday, March 18 11:00 pm

• Submit in Gradescope: no grinch

– Worth > regular homework and  < midterm

• For individual questions for me or the CSE 311 staff between 

now and then use the Ed discussion board.

– Mark the “Private” checkbox near the bottom of the New Thread 

creation page

• Because previous assignments will now end up being worth 

more than they were:

– We will compute your “Best 7 of 8” for those grades

– The Final Homework is not part of this. 



Review:  Countability vs Uncountability

• To prove a set A countable you must show

– There exists a listing x1,x2,x3, ... such that every 

element of A is in the list.

• To prove a set B uncountable you must show

– For every listing x1,x2,x3, ... there exists some 

element in B that is not in the list.

– The diagonalization proof shows how to describe a 

missing element d in B based on the listing x1,x2,x3, ... .       
Important: the proof produces a d no matter what the listing is. 



Last time: Undecidability of the Halting Problem

CODE(P) means “the code of the program P”

Theorem [Turing]:   There is no program that solves 

the Halting Problem

Proof:  By contradiction.

Assume that a program H solving the Halting 

program does exist.  Then program D must exist

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x



H solves the halting problem implies that                              
H(CODE(D),x) is true iff D(x) halts,  H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true

Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false

Which by the definition of D means D(CODE(D)) halts

public static void D(x) {

if (H(x,x) == true) {

while (true); /* don’t halt */

}

else {

return; /*    halt    */

}

}

Does D(CODE(D)) halt?

Contradiction!



The Halting Problem isn’t the only hard problem

• Can use the fact that the Halting Problem is 
undecidable to show that other problems are 
undecidable

General method:
Prove that if there were a program deciding B then there    
would be a way to build a program deciding the Halting 
Problem. 

“B decidable  → Halting Problem decidable”

Contrapositive:

“Halting Problem undecidable → B undecidable” 

Therefore B is undecidable



Last time: A CSE 141 assignment

Students should write a Java program that:

– Prints “Hello” to the console

– Eventually exits

GradeIt, PracticeIt, etc. need to grade the 

students. 

How do we write that grading program?

WE CAN’T:  THIS IS IMPOSSIBLE!



Last Time: A related undecidable problem

• HelloWorldTesting Problem: 

– Input:  CODE(Q) and x

– Output: 

True if Q outputs “HELLO WORLD” on input x

False if Q does not output “HELLO WORLD” on input x

• Theorem: The HelloWorldTesting Problem is undecidable.

• Proof idea:  Show that if there is a program T to decide 

HelloWorldTesting then there is a program H to decide the 

Halting Problem for code(P) and x.   



Last time: The HaltsNoInput Problem

• Input:  CODE(R) for program R

• Output: True if R halts without reading input

False otherwise.

Theorem:  HaltsNoInput is undecidable

General idea “hard-coding the input”: 

• Show how to use CODE(P) and x to build CODE(R) so 

P halts on input x  ⇔ R halts without reading input



Last time

• The impossibility of writing the CSE 141 grading 

program follows by combining the ideas from the 

undecidability of HaltsNoInput and HelloWorld.



More Reductions

- Can use undecidability of these problems to show that 

other problems are undecidable.

- For instance:

EQUIV(
, �) : True if 
 � and �(�) have the same 

I/O behavior for every input �

False otherwise



Rice’s theorem

Not every problem on programs is undecidable!

Which of these is decidable?

• Input CODE(P) and x

Output: true if P prints “ERROR” on input x

after less than 100 steps

false otherwise

• Input CODE(P) and x

Output: true    if P prints “ERROR” on input x

after more than 100 steps

false otherwise

Rice’s Theorem (a.k.a. Compilers Suck Theorem - informal):

Any “non-trivial” property of the input-output behavior of 

Java programs is undecidable.

ARE DIFFICULT



CFGs are complicated

We know can answer almost any question about 

• Regular Expressions, DFAs, NFAs, FSMs

But many problems about CFGs are undecidable!

• Is there any string that two CFGs both accept?

• Do two CFGs accept the same language?

• Does a CFG accept every string?



Computers and algorithms

• Does Java (or any programming language) cover all possible 
computation? Every possible algorithm?

• There was a time when computers were people who did 
calculations on sheets paper to solve computational 
problems

• Computers as we known them arose from trying to 
understand everything these people could do.



Before Java

1930’s:
How can we formalize what algorithms are possible?

• Turing machines (Turing, Post)

– basis of modern computers

• Lambda Calculus (Church)

– basis for functional programming, LISP

• µ-recursive functions (Kleene)

– alternative functional programming basis



Turing machines

Church-Turing Thesis:

Any reasonable model of computation that includes all 

possible algorithms is equivalent in power to a Turing 

machine

Evidence

– Intuitive justification

– Huge numbers of models based on radically 

different ideas turned out to be equivalent to TMs



Turing machines

• Finite Control
– Brain/CPU  that has only a finite # of possible “states 

of mind”

• Recording medium
– An unlimited supply of blank “scratch paper” on 

which to write & read symbols, each chosen from a
finite set of possibilities

– Input also supplied on the scratch paper

• Focus of attention
– Finite control can only focus on a small portion of the 

recording medium at once

– Focus of attention can only shift a small amount at a 
time



Turing machines

• Recording medium
– An infinite read/write “tape” marked off into cells

– Each cell can store one symbol or be “blank”

– Tape is initially all blank except a few cells of the tape 
containing the input string

– Read/write head can scan one cell of the tape - starts on 
input

• In each step, a Turing machine
1. Reads the currently scanned cell

2. Based on current state and scanned symbol 

i. Overwrites symbol in scanned cell

ii. Moves read/write head left or right one cell

iii. Changes to a new state

• Each Turing Machine is specified by its finite set of rules



Turing machines

_ _ 1 1 0 1 1 _ _

_ 0 1

s1 (1, L, s3) (1, L, s4) (0, R, s2)

s2 (0, R, s1) (1, R, s1) (0, R, s1)

s3

s4



UW CSE’s Steam-Powered Turing Machine

Original in Sieg Hall stairwell



Turing machines

Ideal Java/C programs:

– Just like the Java/C you’re used to programming 
with, except you never run out of memory

• Constructor methods always succeed

• malloc in C never fails

Equivalent to Turing machines except a lot easier to 
program:

– Turing machine definition is useful for breaking 
computation down into simplest steps

– We only care about high level so we use programs



Turing’s big idea part 1:  Machines as data

Original Turing machine definition:

– A different “machine” M for each task

– Each machine M is defined by a finite set of 
possible operations on finite set of symbols

– So... M has a finite description as a sequence of 
symbols, its “code”, which we denote <M>

You already are used to this idea with the notion of the 
program code or text but this was a new idea in Turing’s 
time.



Turing’s big idea part 2:  A Universal TM

• A Turing machine interpreter U

– On input <M> and its input x,                                                    

U outputs the same thing as M does on input x

– At each step it decodes which operation M would have 

performed and simulates it.

• One Turing machine is enough

– Basis for modern stored-program computer

Von Neumann studied Turing’s UTM design

M
input

x
output

M(x) U
x output

M(x)
<M>



Takeaway from undecidability

• You can’t rely on the idea of improved 

compilers and programming languages to 

eliminate major programming errors

– truly safe languages can’t possibly do general 

computation

• Document your code

– there is no way you can expect someone else 

to figure out what your program does with just 

your code; since in general it is provably 

impossible to do this!



We’ve come a long way!

• Propositional Logic. 

• Boolean logic and circuits.

• Boolean algebra.

• Predicates, quantifiers and predicate logic.

• Inference rules and formal proofs for propositional and 

predicate logic.

• English proofs.

• Set theory.

• Modular arithmetic.

• Prime numbers.

• GCD, Euclid's algorithm and modular inverse



We’ve come a long way!

• Induction and Strong Induction.

• Recursively defined functions and sets.

• Structural induction.

• Regular expressions.

• Context-free grammars and languages.

• Relations and composition.

• Transitive-reflexive closure.

• Graph representation of relations and their closures.



We’ve come a long way!

• DFAs, NFAs and language recognition.

• Product construction for DFAs.

• Finite state machines with outputs at states.

• Minimization algorithm for finite state machines

• Conversion of regular expressions to NFAs.

• Subset construction to convert NFAs to DFAs.

• Equivalence of DFAs, NFAs, Regular Expressions 

• Method to prove languages not accepted by DFAs.

• Cardinality, countability and diagonalization

• Undecidability: Halting problem and evaluating properties 

of programs.



What’s next?  ...after the final homework...

• Foundations II  (CSE 312)

– Fundamentals of counting, discrete probability, 

applications of randomness to computing, 

statistical algorithms and analysis

– Ideas critical for machine learning, algorithms

• Data Abstractions (CSE 332)

– Data structures, a few key algorithms, parallelism

– Brings programming and theory together

– Makes heavy use of induction and recursive defns



Complexity Theory   (in CSE 431 and beyond)

Not just what can be computed at all...

How about what can be computed efficiently?

A rich, interesting, and important topic.



Thank you!

• For being a great class this quarter!

• For bearing with me/us during this trying 

time!

• Stay healthy!

• Come by my office and say “Hello” when all 

this is over…



Thank you!


