CSE 311: Foundations of Computing

Lecture 28: Undecidability, Reductions, and Turing Machines

Final Homework Assignment

- Due Wednesday, March 18 11:00 pm
- Submit in Gradescope: no grinch
 - Worth > regular homework and < midterm</p>
- For individual questions for me or the CSE 311 staff between now and then use the Ed discussion board.
 - Mark the "Private" checkbox near the bottom of the New Thread creation page
- Because previous assignments will now end up being worth more than they were:
 - We will compute your "Best 7 of 8" for those grades
 - The Final Homework is not part of this.

Review: Countability vs Uncountability

- To prove a set A countable you must show
 - There exists a listing $x_1, x_2, x_3, ...$ such that every element of A is in the list.
- To prove a set B uncountable you must show
 - For every listing x_1,x_2,x_3 , ... there exists some element in B that is not in the list.
 - The diagonalization proof shows how to describe a missing element d in B based on the listing x_1, x_2, x_3, \dots . *Important:* the proof produces a d no matter what the listing is.

Last time: Undecidability of the Halting Problem

CODE(P) means "the code of the program P"

The Halting Problem

Given: - CODE(**P**) for any program **P**

- input **x**

Output: true if P halts on input x

false if P does not halt on input x

Theorem [Turing]: There is no program that solves the Halting Problem

Proof: By contradiction.

Assume that a program H solving the Halting program does exist. Then program D must exist

Does D(CODE(D)) halt?

```
public static void D(x) {
   if (H(x,x) == true) {
     while (true); /* don't halt */
   }
   else {
     return; /* halt */
   }
}
```

```
The ONLY assumption was the program Hexists
H solves the halting problem implies that
   H(CODE(D),x) is true iff D(x) halts, H(CODE(D)
     The UNLY dissumption must have been false.
Suppose that D(CODE(D)) halts.
   Then, by definition of H it mus
   Which by the defin
                                    (CODE(D)) doesn't halt
Suppose the
                                               Contradiction
   White definition of D means D(CODE(D)) halts
```

The Halting Problem isn't the only hard problem

 Can use the fact that the Halting Problem is undecidable to show that other problems are undecidable

General method:

Prove that if there were a program deciding B then there would be a way to build a program deciding the Halting Problem.

"B decidable → Halting Problem decidable" Contrapositive:

"Halting Problem undecidable → B undecidable"

Therefore B is undecidable

Last time: A CSE 141 assignment

Students should write a Java program that:

- Prints "Hello" to the console
- Eventually exits

Gradelt, Practicelt, etc. need to grade the students.

How do we write that grading program?

WE CANT: THIS IS IMPOSSIBLE!

Last Time: A related undecidable problem

- HelloWorldTesting Problem:
 - Input: CODE(Q) and x
 - Output:

True if Q outputs "HELLO WORLD" on input x

False if Q does not output "HELLO WORLD" on input x

- Theorem: The HelloWorldTesting Problem is undecidable.
- Proof idea: Show that if there is a program T to decide HelloWorldTesting then there is a program H to decide the Halting Problem for code(P) and x.

Last time: The HaltsNoInput Problem

- Input: CODE(R) for program R
- Output: True if R halts without reading input
 False otherwise.

Theorem: HaltsNoInput is undecidable

General idea "hard-coding the input":

• Show how to use CODE(P) and x to build CODE(R) so P halts on input $x \Leftrightarrow R$ halts without reading input

Last time

 The impossibility of writing the CSE 141 grading program follows by combining the ideas from the undecidability of HaltsNoInput and HelloWorld.

More Reductions

 Can use undecidability of these problems to show that other problems are undecidable.

- For instance:

EQUIV(P,Q): True if P(x) and Q(x) have the same I/O behavior for every input x

Rice's theorem

Not every problem on programs is undecidable! Which of these is decidable?

Input CODE(P) and x
Output: true if P prints "ERROR" on input x
after less than 100 steps
false otherwise

Output: true if P prints "ERROR" on input x after more than 100 steps false otherwise

Rice's Theorem (a.k.a. Compilers

ARE DIFFICULT

Any "non-trivial" property of the input-output behavior of Java programs is undecidable.

CFGs are complicated

We know can answer almost any question about

Regular Expressions, DFAs, NFAs, FSMs

But many problems about CFGs are undecidable!

• Is there any string that two CFGs both accept?

Do two CFGs accept the same language?

Does a CFG accept every string?

Computers and algorithms

 Does Java (or any programming language) cover all possible computation? Every possible algorithm?

 There was a time when computers were people who did calculations on sheets paper to solve computational

problems

 Computers as we known them arose from trying to understand everything these people could do.

Before Java

1930's:

How can we formalize what algorithms are possible?

- Turing machines (Turing, Post)
 - basis of modern computers
- Lambda Calculus (Church)
 - basis for functional programming, LISP
- μ-recursive functions (Kleene)
 - alternative functional programming basis

Church-Turing Thesis:

Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

Evidence

- Intuitive justification
- Huge numbers of models based on radically different ideas turned out to be equivalent to TMs

Finite Control

— Brain/CPU that has only a finite # of possible "states of mind"

Recording medium

- An unlimited supply of blank "scratch paper" on which to write & read symbols, each chosen from a finite set of possibilities
- Input also supplied on the scratch paper

Focus of attention

- Finite control can only focus on a small portion of the recording medium at once
- Focus of attention can only shift a small amount at a time

- Recording medium
 - An infinite read/write "tape" marked off into cells
 - Each cell can store one symbol or be "blank"
 - Tape is initially all blank except a few cells of the tape containing the input string
 - Read/write head can scan one cell of the tape starts on input
- In each step, a Turing machine
 - 1. Reads the currently scanned cell
 - 2. Based on current state and scanned symbol
 - i. Overwrites symbol in scanned cell
 - ii. Moves read/write head left or right one cell
 - iii. Changes to a new state
- Each Turing Machine is specified by its finite set of rules

		_	0	1
—)	s _{1/}	(1, L, s ₃)	$(1, \mathbf{L}, \mathbf{s}_4)$	(0, R, s ₂)
	s_2	(0, R, s ₁)	(1, R, s ₁)	$(0, R, s_1)$
Hutt	S ₃			
464	(S ₄			
N	•			

UW CSE's Steam-Powered Turing Machine

Original in Sieg Hall stairwell

Ideal Java/C programs:

- Just like the Java/C you're used to programming with, except you never run out of memory
 - Constructor methods always succeed
 - malloc in C never fails

Equivalent to Turing machines except a lot easier to program:

- Turing machine definition is useful for breaking computation down into simplest steps
- We only care about high level so we use programs

Turing's big idea part 1: Machines as data

Original Turing machine definition:

- A different "machine" M for each task
- Each machine M is defined by a finite set of possible operations on finite set of symbols
- So... M has a finite description as a sequence of symbols, its "code", which we denote <M>

You already are used to this idea with the notion of the program code or text but this was a new idea in Turing's time.

Turing's big idea part 2: A Universal TM

- A Turing machine interpreter U
 - On input <M> and its input x,
 U outputs the same thing as M does on input x
 - At each step it decodes which operation M would have performed and simulates it.
- One Turing machine is enough
 - Basis for modern stored-program computer
 Von Neumann studied Turing's UTM design

Takeaway from undecidability

- You can't rely on the idea of improved compilers and programming languages to eliminate major programming errors
 - truly safe languages can't possibly do general computation
- Document your code
 - there is no way you can expect someone else to figure out what your program does with just your code; since in general it is provably impossible to do this!

We've come a long way!

- Propositional Logic.
- Boolean logic and circuits.
- Boolean algebra.
- Predicates, quantifiers and predicate logic.
- Inference rules and formal proofs for propositional and predicate logic.
- English proofs.
- Set theory.
- Modular arithmetic.
- Prime numbers.
- GCD, Euclid's algorithm and modular inverse

We've come a long way!

- Induction and Strong Induction.
- Recursively defined functions and sets.
- Structural induction.
- Regular expressions.
- Context-free grammars and languages.
- Relations and composition.
- Transitive-reflexive closure.
- Graph representation of relations and their closures.

We've come a long way!

- DFAs, NFAs and language recognition.
- Product construction for DFAs.
- Finite state machines with outputs at states.
- Minimization algorithm for finite state machines
- Conversion of regular expressions to NFAs.
- Subset construction to convert NFAs to DFAs.
- Equivalence of DFAs, NFAs, Regular Expressions
- Method to prove languages not accepted by DFAs.
- Cardinality, countability and diagonalization
- Undecidability: Halting problem and evaluating properties of programs.

What's next? ...after the final homework...

Foundations II (CSE 312)

- Fundamentals of counting, discrete probability, applications of randomness to computing, statistical algorithms and analysis
- Ideas critical for machine learning, algorithms

Data Abstractions (CSE 332)

- Data structures, a few key algorithms, parallelism
- Brings programming and theory together
- Makes heavy use of induction and recursive defns

Complexity Theory (in CSE 431 and beyond)

Not just what can be computed at all...

How about what can be computed *efficiently*?

A rich, interesting, and important topic.

Thank you!

For being a great class this quarter!

 For bearing with me/us during this trying time!

Stay healthy!

 Come by my office and say "Hello" when all this is over...

Thank you!

