CSE 311: Foundations of Computing

Lecture 21: DFAs and Finite State Machines with Output

Finite State Machines

(DFA)

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

Old State	0	1
s ₀	s ₀	S ₁
S ₁	s_0	s ₂
S ₂	s_0	S ₃
S ₃	S ₃	S ₃

Finite State Machines

 Each machine designed for strings over some fixed alphabet Σ.

Must have a transition defined from each state for

every symbol in Σ .

M₁: Strings with an even number of 2's

M₂: Strings where the sum of digits mod 3 is 0

M₁: Strings with an even number of 2's

M₂: Strings where the sum of digits mod 3 is 0

M₁: Strings with an even number of 2's

M₂: Strings where the sum of digits mod 3 is 0

What language does this machine recognize?

What language does this machine recognize?

The set of all binary strings with # of 1's \equiv # of 0's (mod 2) (both are even or both are odd).

Can you think of a simpler description?

M₁: Strings with an even number of 2's

M₂: Strings where the sum of digits mod 3 is 0

Strings over {0,1,2} w/ even number of 2's and mod 3 sum 0

Strings over {0,1,2} w/ even number of 2's and mod 3 sum 0

Strings over {0,1,2} w/ even number of 2's OR mod 3 sum 0

The set of binary strings with a 1 in the 3rd position from the start

The set of binary strings with a 1 in the 3rd position from the end

The beginning versus the end

hte porih

7 N

Adding Output to Finite State Machines

- So far we have considered finite state machines that just accept/reject strings
 - called "Deterministic Finite Automata" or DFAs

- Now we consider finite state machines that with output
 - These are the kinds used as controllers

Vending Machine

Enter 15 cents in dimes or nickels Press S or B for a candy bar

Vending Machine, v0.1

Basic transitions on **N** (nickel), **D** (dime), **B** (butterfinger), **S** (snickers)

Vending Machine, v0.2

Adding output to states: N – Nickel, S – Snickers, B – Butterfinger

Vending Machine, v1.0

Adding additional "unexpected" transitions to cover all symbols for each state