CSE 311: Foundations of Computing

Lecture 17: Structural Induction, Regular expressions
Recursive Definitions of Sets: General Form

Recursive definition

- **Basis step**: Some specific elements are in S.
- **Recursive step**: Given some existing named elements in S, some new objects constructed from these named elements are also in S.
- **Exclusion rule**: Every element in S follows from the basis step and a finite number of recursive steps.
Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the *Basis step*.

Inductive Hypothesis: Assume that P is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*.

Inductive Step: Prove that $P(w)$ holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the *Inductive Hypothesis*.

Conclude that $\forall x \in S, P(x)$.
Strings

• An \textit{alphabet} Σ is any finite set of characters

• The set Σ^* of \textit{strings} over the alphabet Σ is defined by

 – \textbf{Basis:} $\varepsilon \in \Sigma^*$ (ε is the empty string w/ no chars)

 – \textbf{Recursive:} if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$
Functions on Recursively Defined Sets (on Σ^*)

Length:

\[\text{len}(\varepsilon) = 0 \]
\[\text{len}(wa) = 1 + \text{len}(w) \text{ for } w \in \Sigma^*, a \in \Sigma \]

Reversal:

\[\varepsilon^R = \varepsilon \]
\[(wa)^R = aw^R \text{ for } w \in \Sigma^*, a \in \Sigma \]

Concatenation:

\[x \cdot \varepsilon = x \text{ for } x \in \Sigma^* \]
\[x \cdot wa = (x \cdot w)a \text{ for } x \in \Sigma^*, a \in \Sigma \]

Number of c’s in a string:

\[#_c(\varepsilon) = 0 \]
\[#_c(wc) = #_c(w) + 1 \text{ for } w \in \Sigma^* \]
\[#_c(wa) = #_c(w) \text{ for } w \in \Sigma^*, a \in \Sigma, a \neq c \]
Claim: \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)\) for all \(x, y \in \Sigma^*\)

Let \(P(y)\) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)\) for all \(x \in \Sigma^*\)” .
We prove \(P(y)\) for all \(y \in \Sigma^*\) by structural induction.

Base Case: \(y = \varepsilon\). For any \(x \in \Sigma^*\), \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon)\) since \(\text{len}(\varepsilon) = 0\). Therefore \(P(\varepsilon)\) is true.

Inductive Hypothesis: Assume that \(P(w)\) is true for some arbitrary \(w \in \Sigma^*\).

Inductive Step: **Goal:** Show that \(P(wa)\) is true for every \(a \in \Sigma\).

Let \(a \in \Sigma\). Let \(x \in \Sigma^*\). Then \(\text{len}(x \cdot wa) = \text{len}((x \cdot w)a)\) by defn of \(\cdot\)
\[
= \text{len}(x \cdot w) + 1 \quad \text{by defn of len}
\]
\[
= \text{len}(x) + \text{len}(w) + 1 \quad \text{by I.H.}
\]
\[
= \text{len}(x) + \text{len}(wa) \quad \text{by defn of len}
\]
Therefore \(\text{len}(x \cdot wa) = \text{len}(x) + \text{len}(wa)\) for all \(x \in \Sigma^*\), so \(P(wa)\) is true.

So, by induction \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)\) for all \(x, y \in \Sigma^*\).
Rooted Binary Trees

• Basis: is a rooted binary tree

• Recursive step:

If T_1 and T_2 are rooted binary trees,

then Null also is a rooted binary tree.
Defining Functions on Rooted Binary Trees

- $\text{size}(\bullet) = 1$

- $\text{size}\left(\begin{array}{c} T_1 \\ T_2 \end{array}\right) = 1 + \text{size}(T_1) + \text{size}(T_2)$

- $\text{height}(\bullet) = 0$

- $\text{height}\left(\begin{array}{c} T_1 \\ T_2 \end{array}\right) = 1 + \max\{\text{height}(T_1), \text{height}(T_2)\}$
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

Proof: Let $\Phi(T)$ be "$\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$". We $\Phi(T)$ for all rooted binary trees T by structural induction.

2. Base Case: ($T = \emptyset$) $\text{height}(\cdot) = 0$ $\text{size}(\cdot) = 1 = 2 - 1 = 2^{0+1} - 1 = 2^{\text{height}(\cdot)} + 1 - 1$ $\therefore \Phi(\cdot)$ other
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\bullet) = 1$, $\text{height}(\bullet) = 0$ and $1 = 2^1 - 1 = 2^{0+1} - 1$ so $P(\bullet)$ is true.

3. Inductive Hypothesis: Assume that $P(T_1)$ and $P(T_2)$ are true for some arbitrary rooted binary trees T_1 and T_2.

4. Inductive Step: \[
\text{Goal: Prove } P(T)\\
\text{By defn, } \text{size}(T) = \text{size}(T_1) + \text{size}(T_2) + 1 \leq 2^{\text{height}(T_1)} + 1 + 2^{\text{height}(T_2)} + 1 - 1 \leq 2^{\text{max}(\text{height}(T_1), \text{height}(T_2)) + 1} - 1 = 2 \cdot 2^{\text{height}(T)} - 1 = \text{height}(T) - 1
\] So, the $P(T)$ is true for all rooted binary trees by structural induction.
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\bullet)=1$, $\text{height}(\bullet)=0$ and $1=2^1 - 1 = 2^{0+1} - 1$ so $P(\bullet)$ is true.

3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2.

4. Inductive Step: Goal: Prove $P(\text{rooted binary tree}).$
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)+1} - 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\bullet)=1$, $\text{height}(\bullet)=0$ and $1=2^1-1=2^{0+1}-1$ so $P(\bullet)$ is true.

3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2.

4. Inductive Step:

 Goal: Prove $P()$.

 By defn, $\text{size}() = 1 + \text{size}(T_1) + \text{size}(T_2)$

 $\leq 1 + 2^{\text{height}(T_1)+1} - 1 + 2^{\text{height}(T_2)+1} - 1$

 by IH for T_1 and T_2

 $= 2^{\text{height}(T_1)+1} + 2^{\text{height}(T_2)+1} - 1$

 $\leq 2(2^{\text{max}(\text{height}(T_1),\text{height}(T_2))+1}) - 1$

 $= 2(2^{\text{height}(T)}) - 1 = 2^{\text{height}(T)+1} - 1$

 which is what we wanted to show.

5. So, the $P(T)$ is true for all rooted bin. trees by structural induction.
Languages: Sets of Strings

• Sets of strings that satisfy special properties are called *languages*. Examples:
 – English sentences
 – Syntactically correct Java/C/C++ programs
 – $\Sigma^* = \text{All strings over alphabet } \Sigma$
 – Palindromes over Σ
 – Binary strings that don’t have a 0 after a 1
 – Legal variable names. keywords in Java/C/C++
 – Binary strings with an equal # of 0’s and 1’s
Regular Expressions

Regular expressions over Σ

• Basis:
 - \emptyset, ε are regular expressions
 - a is a regular expression for any $a \in \Sigma$

• Recursive step:
 - If A and B are regular expressions then so are:
 - $(A \cup B)$
 - (AB)
 - A^*
Each Regular Expression is a “pattern”

\(\varepsilon \) matches the **empty string**

\(a \) matches the one character string \(a \)

\((A \cup B)\) matches all strings that either \(A \) matches or \(B \) matches (or both)

\((AB)\) matches all strings that have a first part that \(A \) matches followed by a second part that \(B \) matches

\(A^* \) matches all strings that have any number of strings (even 0) that \(A \) matches, one after another
Examples

001*

\{ 00, 001, 0011, 00111, \ldots \}

01*

All binary strings that don't have a 0 after a 1.

Any # of 0's followed by any # of 1's.
Examples

\[001^*\]

\{00, 001, 0011, 00111, \ldots\}

\[01^*\]

Any number of 0’s followed by any number of 1’s
Examples

\((0 \cup 1) \ 0 \ (0 \cup 1) \ 0\)

\((0*1*)^*\)
Examples

\((0 \cup 1) \ 0 \ (0 \cup 1) \ 0\)

\{0000, 0010, 1000, 1010\}

\((0*1*)\)*

All binary strings
Examples

\[(0 \cup 1)^* \ 0110 \ (0 \cup 1)^*\]

\[(00 \cup 11)^* \ (01010 \cup 10001) \ (0 \cup 1)^*\]
Examples

\((0 \cup 1)^* 0110 (0 \cup 1)^*\)

Binary strings that contain “0110”

\((00 \cup 11)^* (01010 \cup 10001) (0 \cup 1)^*\)

Binary strings that begin with pairs of characters followed by “01010” or “10001”
Regular Expressions in Practice

- Used to define the “tokens”: e.g., legal variable names, keywords in programming languages and compilers
- Used in `grep`, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of PHP
- We can use regular expressions in programs to process strings!
• Pattern p = Pattern.compile("a*b");
• Matcher m = p.matcher("aaaaab");
• boolean b = m.matches();

 [01] a 0 or a 1 ^ start of string $ end of string
 [0–9] any single digit \ . period \ , comma \ − minus

 . any single character

ab a followed by b (AB)
(a|b) a or b (A ∪ B)
a? zero or one of a (A ∪ ε)
a* zero or more of a A*
a+ one or more of a AA*

• e.g. ^[\-+]?[0–9]* (\ . | \ ,)?[0–9]+$
 General form of decimal number e.g. 9.12 or -9,8 (Europe)