CSE 311: Foundations of Computing

Lecture 16: Recursively Defined Sets & Structural Induction

Last class: Recursive Definition of Sets

Recursive definition of set S

- Basis Step: $0 \in S$
- Recursive Step: If $x \in S$, then $x + 2 \in S$
- Exclusion Rule: Every element in S follows from the basis step and a finite number of recursive steps.

S={even natural numbers}

We need the exclusion rule because otherwise $S=\mathbb{N}$ would satisfy the other two parts. However, we won't always write it down on these slides.

Last class: Recursive Definitions of Sets

Basis: $6 \in S$, $15 \in S$

Recursive: If $x,y \in S$, then $x+y \in S$

S={6,12,15,18,21,...}

Basis: $[1, 1, 0] \in S, [0, 1, 1] \in S$

Recursive: If $[x, y, z] \in S$, then $[\alpha x, \alpha y, \alpha z] \in S$ for any $\alpha \in \mathbb{R}$

If $[x_1, y_1, z_1] \in S$ and $[x_2, y_2, z_2] \in S$, then

 $[x_1 + x_2, y_1 + y_2, z_1 + z_2] \in S.$

S={plane in \mathbb{R}^3 spanned by [1,1,0] and [0,1,1]}

Number of form 3^n for $n \ge 0$:

Basis: $1 \in S$

Recursive: If $x \in S$, then $3x \in S$.

Recursive Definitions of Sets: General Form

Recursive definition

- Basis step: Some specific elements are in S
- Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S.
- Exclusion rule: Every element in S follows from the basis step and a finite number of recursive steps

Strings

An alphabet ∑ is any finite set of characters

- The set Σ* of strings over the alphabet Σ is defined by
 - Basis: $\varepsilon \in \Sigma^*$ (ε is the empty string w/ no chars)
 - Recursive: if $\widetilde{w} \in \Sigma^*$, $\widetilde{a} \in \Sigma$, then $\widetilde{wa} \in \Sigma^*$

Thite length

Palindromes

Palindromes are strings that are the same backwards and forwards

totor

Basis:

 ϵ is a palindrome and any $a \in \Sigma$ is a palindrome

Recursive step:

If p is a palindrome then apa is a palindrome for every $a \in \Sigma$

All Binary Strings with no 1's before 0's

Betis: E, 0,165

Reuman: It pes then Reum: It pes

Opes and ples

Ren opes and

ples

Recurre: It pes then II pentern 1 the ples

mod trap po and

ples

All Binary Strings with no 1's before 0's

Basis:

 $\varepsilon \in S$

Recursive:

If $x \in S$, then $0x \in S$ If $x \in S$, then $x1 \in S$

Functions on Recursively Defined Sets (on Σ^*)

Length:

$$len(\epsilon) = 0$$

 $len(wa) = 1 + len(w)$ for $w \in \Sigma^*$, $a \in \Sigma$

Reversal:

$$\varepsilon^R = \varepsilon$$
(wa)^R = aw^R for $w \in \Sigma^*$, $a \in \Sigma$

$$(110)^{R} = 0(11)^{R}$$

$$= 011^{R}$$

$$= 0115^{R}$$

$$= 0115^{R}$$

Concatenation:

$$x \bullet \varepsilon = x \text{ for } x \in \Sigma^*$$

 $x \bullet wa = (x \bullet w)a \text{ for } x \in \Sigma^*, a \in \Sigma$

Number of c's in a string:

$$\#_{c}(\epsilon) = 0$$

$$\#_{c}(wc) = \#_{c}(w) + 1 \text{ for } w \in \Sigma^{*}$$

$$\#_{c}(wa) = \#_{c}(w) \text{ for } w \in \Sigma^{*}, a \in \Sigma, a \neq c$$

Rooted Binary Trees

Basis:

- is a rooted binary tree
- Recursive step:

Defining Functions on Rooted Binary Trees

• size(\bullet) = 1

• height(•) = 0

• height
$$(T_1)$$
 = 1 + max{height(T_1), height(T_2)}

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of structural induction:

Recursive definition of $\mathbb N$

Basis: $0 \in \mathbb{N}$

Recursive step: If $k \in \mathbb{N}$ then $k + 1 \in \mathbb{N}$

Structural induction follows from ordinary induction:

Define Q(n) to be "for all $x \in S$ that can be constructed in at most n recursive steps, P(x) is true."

Using Structural Induction

- Let S be given by...
 - **Basis:** 6 ∈ S; 15 ∈ S;
 - Recursive: if $x, y \in S$ then $x + y \in S$.

Claim: Every element of S is divisible by 3.

1. P(x) is "x is divible by 3". We prove

P(x) for all xelf by industria.

2. Date Case: 3[6 al 3]15 so 1(6) 1(15) are bu

3. Ith. Avance that 3 | x and 3 | y for me

arbitrary x, y es

4. I's. by Ith x=3h and y=3h for me interest

i. x +y = 3 let >1 = 7(h+l)

i. x +y = 3 let >1 = 7(h+l)

i. x +y = 3 let >1 = 7(h+l)

i. y | which every ell of 5 is divible

i. y | which every ell of 5 is divible

Claim: Every element of S is divisible by 3.

- **1.** Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.
- 2. Base Case: 3 | 6 and 3 | 15 so P(6) and P(15) are true

Basis: $6 \in S$; $15 \in S$;

Recursive: if $x, y \in S$ then $x + y \in S$

Claim: Every element of S is divisible by 3.

- **1.** Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.
- 2. Base Case: 3 | 6 and 3 | 15 so P(6) and P(15) are true
- 3. Inductive Hypothesis: Suppose that P(x) and P(y) are true for some arbitrary $x,y \in S$
- 4. Inductive Step: Goal: Show P(x+y)

Basis: $6 \in S$; $15 \in S$;

Recursive: if $x, y \in S$ then $x + y \in S$

Claim: Every element of S is divisible by 3.

- **1.** Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.
- 2. Base Case: 3 | 6 and 3 | 15 so P(6) and P(15) are true
- 3. Inductive Hypothesis: Suppose that P(x) and P(y) are true for some arbitrary $x,y \in S$
- 4. Inductive Step: Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and since P(y) is true, 3|y and so y=3n for some integer n.

Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).

Hence P(x+y) is true.

5. Therefore by induction $3 \mid x$ for all $x \in S$.

Basis: $6 \in S$; $15 \in S$;

Recursive: if $x, y \in S$ then $x + y \in S$

Let P(y) be "len $(x \cdot y) = len(x) + len(y)$ for all $x \in \Sigma^*$ ".

We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Prie (are: 1= 2

 $|en(x.\epsilon)| = |en(x)|$ by def of = |en(x)| + 0 = |cn(x)| + |en(x)| = |en(x)| + |en(x)| + |en(x)| = |en(x)| + |en(x)| + |en(x)| = |en(x)| + |en(x)| + |en(x)| + |en(x)| = |en(x)| + |en(

Ind. Hypothi

Let P(y) be "len $(x \cdot y) = len(x) + len(y)$ for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \cdot \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon) = 0$. Therefore $P(\varepsilon)$ is true

Ded they? Suppose that Piw is true for line withing west (len (x.w) = len (x), +len (w). Ind Sty: [Goal: Show Plwa) is the trajace | leu(x=wa)=leu(x=w)a) hy det of e = |+ leu(x-w) hy det of leu = |+ leu(x-w) hy det of leu = 1+ leu(xx Harlin) by FH = lee (wa) hy det of he

Let P(y) be "len $(x \cdot y) = len(x) + len(y)$ for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \cdot \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon) = 0$. Therefore $P(\varepsilon)$ is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let P(y) be "len $(x \cdot y) = len(x) + len(y)$ for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \cdot \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Therefore $P(\varepsilon)$ is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let $a \in \Sigma$. Let $x \in \Sigma^*$. Then $len(x \cdot wa) = len((x \cdot w)a)$ by defn of \bullet

= len(x•w)+1 by defn of len

= len(x)+len(w)+1 by I.H.

= len(x)+len(wa) by defn of len

Therefore $len(x \cdot wa) = len(x) + len(wa)$ for all $x \in \Sigma^*$, so P(wa) is true.

So, by induction $len(x \bullet y) = len(x) + len(y)$ for all $x,y \in \Sigma^*$