CSE 311: Foundations of Computing

Lecture 14: Induction & Strong Induction




Midterm

A week today (Friday, Feb 14) in class

 Closed book, closed notes
— You will get lists of inference rules & equivalences

* Covers material up to end of ordinary induction. )

* Practice problems & practice midterm on the
website

— Solutions early next week
e Solutions to HW5 in Section next Thursday

* | will run a review session Thursday, Feb 13, 5:00-6:30 pm
in Sieg Hall 134. Please bring your questions!

——_




Inductive Proofs In 5 Easy Steps

. “Let P/(n) be... . We will show that P(n) is true for all
integers n = 0 by induction.”
. “Base Case:” Prove P(0)
. “Inductive Hypothesis:
Assume P (k) is true for some arbitrary integer k = 0”
. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’tassume P(k + 1))
. “Conclusion: P(n) is true for all integers n = 0”




Induction: Changing the start line

 What if we want to prove that P(n) is true
for all integers n = b for some integer b?

* Define predicate Q(k) = P(k + b) for all k.
—Then Vn Qﬂ) =vVn=b P(n)

* Ordinary induction for Q:
— Prove Q(0) = P(b)

— Prove
vk (Q(k) > Q(k+ 1)) =Vk > b(P(k) — P(k + 1))



Inductive Proofs In 5 Easy Steps

. “Let P(n) be.... We will show that P(n) is true for all
integers n z\b/by induction.”

. “Base Case:” Prove P(b)

. “Inductive Hypothesis:
Assume P (k) is true for some arbitrary integer k = b”

. “Inductive Step:” Prove that P(k + 1) is true: \’
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’tassume P(k + 1))

. “Conclusion: P(n) is true for all integers n = b”
—



Inductive Proofs In 5 Easy Steps

. “Let P(n) be.... We will show that P(n) is true for all
integers n = b by induction.”

. “Base Case:” Prove P(b)
. “Inductive Hypothesis:

Assume P (k) is true for some arbitrary integer k = b”
. “Inductive Step:” Prove that P(k + 1) is true:

Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are
using it. (Don’tassume P(k + 1))
. “Conclusion: P(n) is true for all integers n = b”
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Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n%+3”. We will show P(n) is true for all
integers n > 2 by induction.

2. Base Case (n=2):



Prove 3" >n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.
Base Case (n=2): 3%2=9>7=4+43=22+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k ¥ 2

Inductive Step: -
Goal: Show P(k+1), i.e. show 3%*1> (k+1)2+3 = '+ 2k

3\" 7/]47“'3 - by IH (P(Iu) )
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Prove 3" >n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.
Base Case (n=2): 3%2=9>7=4+43=22+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2.

Inductive Step:
Goal: Show P(k+1), i.e. show 3%1 > (k+1)2+3=k2+2k+4




Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.
Base Case (n=2): 3%2=9>7=4+43=22+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2.

Inductive Step:
Goal: Show P(k+1), i.e. show 3%1 > (k+1)2+3=k2+2k+4
3k+1 — 3(3k)
> 3(k%+3) by the IH
= k2+2k?+9
> k?+2k+4 = (k+1)%+3 since k > 1.
Therefore P(k+1) is true.

5. Thus P(n) is true for all integers n > 2, by induction.



Recall: Induction Rule of Inference

Domain: Natural Numbers P(0) —
vk (P(k) - P(k+1)) —

~Vn P(n) <

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)—P(3) P(3)—-P(4) P(4)—P(5)

~~ N -~ N 7 N 7 N o N
P(0) P(1) P(2) P(3) P(4) P(5)
~_



Recall: Induction Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~vVn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)—=P(2) P(2)—>P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) PR2) P@3) P&  P(5)

We made it harder than we needed to ...
When we proved P(2) we knew BOTH P(0) and P(1)
When we proved P(3) we knew P(0) and P(1) and P(2)
When we proved P(4) we knew P(0), P(1), P(2),P(3)
etc.

That’s the essence of the idea of Strong Induction.



Strong Induction

P(0)
vk ((P(0) AP(1) AP(2) A+ AP(K)) - P(k + 1))

s Vn P(n)

00 = P Al A~ - /1 Fk)
- 35 ((02j24-0(5))



Strong Induction

P(0)
vk ((P(0) AP(1) AP(2) A+ AP(K)) - P(k + 1))

s Vn P(n)

Strong induction for P follows from ordinary induction for
where

Q(k) =P(OOAP(L)APR2)N--NP(k)

Note that Q(0) = P(0) and Q(k + 1) = Q(k) AP(k + 1)
and Vvn Q(n) =vnP(n) 4 — T —




Inductive Proofs In 5 Easy Steps

. “Let P(n) be.... We will show that P(n) is true for all
integersn = b by/\induction.”

. “Base Case:” Prove P(b) —

. “Inductive Hypothesis:
Assume that for some arbitrary integer k > a
P(k) is true” Y. - - 77/ W
. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out w;at you need.

Make sure you are using I.H. and point out where you are
using it. (Don’tassume P(k + 1)!!)

. “Conclusion: P(n) is true for all integers n = b”



Strong Inductive Proofs In 5 Easy Steps
x

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by strong induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis:
Assume that for some arbitrary integer k > b, 3
P(j) is true for every integer j from b to k”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.

Make sure you are using I.H. (that P(b), ..., P(k) are true)
and point out where you are using it.
(Don’t assume P(k + 1) !1)

5. “Conclusion: P(n) is true for all integers n = b”




Recall: Fundamental Theorem of Arithmetic

Every integer > 1 has a unigue prime
factorization

48 = 202223

591 =3+ 197

45,523 = 45,523

321,950 =25+5°47 137
1,234,567,890 =233+ 5+ 3,607 * 3,803

We use strong induction to prove that a factorization into
primes exists, but not that it is unique.



Every integer = 2 is a product of primes.
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Every integer = 2 is a product of primes.

1. Let P(n) be “nis a product of primes”. We will show that P(n) is true
for all integers n > 2 by strong induction.
2. Base Case (n=2): 2is prime, so it is a product of primes.
Therefore P(2) is true.



Every integer = 2 is a product of primes.

1.

2.

Let P(n) be “n is a product of primes”. We will show that P(n) is true

for all integers n > 2 by strong induction.

Base Case (n=2): 2is prime, so it is a product of primes.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

S5

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes
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Every integer = 2 is a product of primes.

1.

2.

Let P(n) be “n is a product of primes”. We will show that P(n) is true
for all integers n > 2 by strong induction.

Base Case (n=2): 2is prime, so it is a product of primes.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes
Case: k+1 is prime: Then by definition k+1 is a product of primes
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Every integer = 2 is a product of primes.

1.

2.

Let P(n) be “n is a product of primes”. We will show that P(n) is true
for all integers n > 2 by strong induction.

Base Case (n=2): 2is prime, so it is a product of primes.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:

Goal: Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime: Then by definition k+1 is a product of primes
Case: k+1 is composite: Then k+1=ab for some integers a and b
where 2 <a, b <k.




Every integer = 2 is a product of primes.

1.

2.

Let P(n) be “n is a product of primes”. We will show that P(n) is true
for all integers n > 2 by strong induction.
Base Case (n=2): 2is prime, so it is a product of primes.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,

P(j) is true for every integer j between 2 and k
Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes
Case: k+1 is prime: Then by definition k+1 is a product of primes

Case: k+1 is composite: Then k+1=ab for some integers a and b
where 2 <3, b < k. By our IH, P(a) and P(b) are true so we have
a=p,p,--p,and b=q,q, - q,
for some primes p,,p,,..., P, 41,95+, U
Thus, k+1 =ab = p,p, :*- p,q,9, *** 9, Which is a product of primes.




Every integer = 2 is a product of primes.

1. Let P(n) be “nis a product of primes”. We will show that P(n) is true
for all integers n > 2 by strong induction.

2. Base Case (n=2): 2is prime, so it is a product of primes.
Therefore P(2) is true.

3. Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

4. Inductive Step:

Goal: Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime: Then by definition k+1 is a product of primes

Case: k+1 is composite: Then k+1=ab for some integers a and b
where 2 <3, b < k. By our IH, P(a) and P(b) are true so we have
a=p,p,--p,and b=q,q, - q,
for some primes p,,p,,..., P, 41,95+, U
Thus, k+1 =ab = p,p, :*- p,q,9, *** 9, Which is a product of primes.
Since k > 2, one of these cases must happen and so P(k+1) is true:

5. Thus P(n) is true for all integers n > 2, by strong induction.




Strong Induction is particularly useful when...

...we need to analyze methods that on input k make
a recursive call for an input different from k — 1.

e.g.. Binary Search:

— For a problem of size k > 1 it makes a recursive call to
a problem of size roughly k /2

We won’t analyze this particular method by strong
induction, but we could.

However, we will use strong induction to analyze
other functions with recursive definitions.



Recursive definitions of functions

F(0O)=0, Fm+1)=Fn)+1foralln = 0. <
F W-n
G(0) =1; G(n+1)=2-q\(n) foralln = 0.
Gln) -2
Ol=1, (n+ 1)) =m+1)-n! foralln = 0.

HO0)=1; Hn+1) =2"™ foralln > 0.

umogjh



Proven! <n"foralln >1




Prove n! < n" foralln =1

1.

Let P(n) be “n! < n"”. We will show that P(n) is true for all

integers n > 1 by induction.
Base Case (ﬂi:.l): @%1-0#1-1:1 11 s0 P(1) is true.

. COTU I .
Inductive Hypothesis: Suppose that P(k) is true for some

arbitrary integer k > 1.
Inductive Step:
Goal: Show P(k+1), i.e. show (k+1)! < (k+1)
(k+1)! = (k+1(kb by definition of !
<(k+1)(¢) by the IH and k+1 >0
< (k+1)- (k+1)* since k=0

= (k+1)'<+1T i e+

Therefore P(k+1) is true.

5. Thus P(n) is true for all n > 1, by induction. __~



More Recursive Definitions el

{L;‘ h(0)

5 b0
P
Then we have familiar summation notation:

_oh()) = h(0)
Z"“ h(i) = h(n+ 1) + XiLo h(i) forn >0

—

Suppose that hi: N — R.

There is also product notation:
_oh(i) = h(0)
lT’"+1 h(i) = h(n + 1) - [Tq k(i) forn = 0



Fibonacci Numbers

fo=0

f1=1

fo=fn1+ fnp foralln =2
“ ~ —




