CSE 311: Foundations of Computing

Lecture 14: Induction

Mathematical Induction

Method for proving statements about all natural numbers

- A new logical inference rule!
 - It only applies over the natural numbers
 - The idea is to use the special structure of the naturals to prove things more easily
- Particularly useful for reasoning about programs!

```
for(int i=0; i < n; n++) { ... }

• Show P(i) holds after i times through the loop
public int f(int x) {
    if (x == 0) { return 0; }
    else { return f(x - 1) + 1; }

• f(x) = x for all values of x ≥ 0 naturally shown by induction.</pre>
```

Let $a, b, m > 0 \in \mathbb{Z}$ be arbitrary. Let $k \in \mathbb{N}$ be arbitrary. Suppose that $a \equiv b \pmod{m}$.

We know $(a \equiv b \pmod{m}) \land a \equiv b \pmod{m}) \rightarrow a^2 \equiv b^2 \pmod{m}$ by multiplying congruences. So, applying this repeatedly, we have:

$$(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^2 \equiv b^2 \pmod{m}$$
$$(a^2 \equiv b^2 \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^3 \equiv b^3 \pmod{m}$$

...

$$\left(a^{k-1} \equiv b^{k-1} \pmod{m} \land a \equiv b \pmod{m}\right) \to a^k \stackrel{?}{\equiv} b^k \pmod{m}$$

The "..."s is a problem! We don't have a proof rule that allows us to say "do this over and over".

But there such a property of the natural numbers!

Domain: Natural Numbers

$$P(0)$$

$$\Rightarrow \forall k \ (P(k) \rightarrow P(k+1)) \qquad \qquad \Rightarrow \forall n \ P(n) \qquad \leftarrow$$

$$P(0) \qquad \Rightarrow \forall n \ P(n) \qquad \leftarrow$$

$$P(0) \qquad \Rightarrow P(0) \Rightarrow P(0) \qquad \Rightarrow P(0) \Rightarrow P(0) \qquad \Rightarrow P(0) \Rightarrow P(0)$$

Induction Is A Rule of Inference

Domain: Natural Numbers

$$P(0)$$

$$\forall k \ (P(k) \to P(k+1)) \leftarrow$$

$$\therefore \forall n \ P(n)$$

How do the givens prove P(5)?

Induction Is A Rule of Inference

Domain: Natural Numbers

How do the givens prove P(5)?

First, we have P(0).

Since $P(k) \rightarrow P(k+1)$ for all k, we have $P(0) \rightarrow P(1)$.

Since P(0) is true and $P(0) \rightarrow P(1)$, by Modus Ponens, P(1) is true.

Since $P(k) \rightarrow P(k+1)$ for all k, we have $P(1) \rightarrow P(2)$.

Since P(1) is true and $P(1) \rightarrow P(2)$, by Modus Ponens, P(2) is true.

$$P(0)$$

$$\forall k (P(k) \rightarrow P(k+1))$$

$$\therefore \forall n P(n)$$

$$\Rightarrow \text{ on a whitey natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #}$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #})$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #})$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #})$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #})$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #})$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #})$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #})$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #})$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #})$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #})$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #})$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #})$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #})$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #})$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #})$$

$$\text{work} \rightarrow \text{ (let per be an arbitrary natural #})$$

$$\text{work} \rightarrow \text{ (let$$

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \ \forall n \ P(n)$$

1. Prove P(0)

- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. \forall n P(n)

Induction: 1, 4

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \ \forall n \ P(n)$$

- 1. Prove P(0)
- 2. Let k be an arbitrary integer ≥ 0

- 3. $P(k) \rightarrow P(k+1)$
- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. \forall n P(n)

Intro \forall : 2, 3

Induction: 1, 4

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \forall n \ P(n)$$

- 1. Prove P(0)
- 2. Let k be an arbitrary integer ≥ 0
 - 3.1. Assume that P(k) is true
 - 3.2. ...
 - 3.3. Prove P(k+1) is true
- 3. $P(k) \rightarrow P(k+1)$
- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. \forall n P(n)

Direct Proof Rule

Intro \forall : 2, 3

Induction: 1, 4

Translating to an English Proof

$$P(0)$$

$$\forall k \ (P(k) \to P(k+1))$$

$$\therefore \forall n \ P(n)$$

1. Prove P(0)

Base Case

- 2. Let k be an arbitrary integer ≥ 0
 - 3.1. Assume that P(k) is true
 - 3.2. ...
 - 3.3. Prove P(k+1) is true

Inductive

Hypothesis

Inductive Step

- 3. $P(k) \rightarrow P(k+1)$
- 4. $\forall k (P(k) \rightarrow P(k+1))$
- $5. \forall n P(n)$

Direct Proof Rule

Intro \forall : 2, 3

Induction: 1, 4

Conclusion

Translating To An English Proof

Conclusion

Induction Proof Template

We will show that P(n) is true for every $n \in \mathbb{N}$ by Induction. Base Case: $[...proof\ of\ P(0)\ here...]$ Induction Hypothesis: Suppose that P(k) is true for some $k \in \mathbb{N}$. Induction Step:

We want to prove that P(k+1) is true. $[...proof\ of\ P(k+1)\ here...]$ The proof of P(k+1) must invoke the IH somewhere. So, the claim is true by induction.

Inductive Proofs In 5 Easy Steps

Proof:

- **1.** "Let P(n) be... . We will show that P(n) is true for every $n \ge 0$ by Induction."
- **2.** "Base Case:" Prove P(0)
- 3. "Inductive Hypothesis:

Assume P(k) is true for some arbitrary integer $k \geq 0$ "

4. "Inductive Step:" Prove that P(k+1) is true:

Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are using it. (Don't assume P(k+1)!!)

5. "Conclusion: Result follows by induction"

What is $1 + 2 + 4 + ... + 2^n$?

• 1
$$= 1$$
• 1 + 2 $= 3$
• 1 + 2 + 4 $= 7$
• 1 + 2 + 4 + 8 $= 15$
• 1 + 2 + 4 + 8 + 16 $= 31$

It sure looks like this sum is $2^{n+1} - 1$ How can we prove it?

We could prove it for n=1, n=2, n=3, ... but that would literally take forever.

Good that we have induction!

Phoof Ly Induction)

1. let de P(u) be 1+2+4+--+2=2h+1'

2. Bare care (u=0): 20=1

20+1-1=2'-1=2-1=1

20+1-1=2'-1=2-1=1

20+1-1=2'-1=2-1=1

Prove
$$1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$$

1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} - 1$ ". We will show P(n) is true for all natural numbers by induction.

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.

3. Inductore Hypkovis: Asome that P(W) 15 true for some natural, h? 0 i.e. | 12+4+...+2h=2h+1-1 Goal: Show P(h4) (Strue 1+2+4+ --+2 "= 2h+2-1 4. Inductor Hep: 1+2+..+ 2h+2h+1 = 2h+1-1 + 2h+1-1 = 2h+1-1 + 2h+1-1 = 2h+

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.

4. Induction Step:

Goal: Show P(k+1), i.e. show $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$

$$1 + 2 + ... + 2^k = 2^{k+1} - 1$$
 by IH

Adding 2^{k+1} to both sides, we get:

$$1 + 2 + ... + 2^{k} + 2^{k+1} = 2^{k+1} + 2^{k+1} - 1$$

Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.

So, we have $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly P(k+1).

Prove
$$1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$$

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show
$$1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$$

 $1 + 2 + ... + 2^k + 2^{k+1} = (1+2+... + 2^k) + 2^{k+1}$
 $= 2^{k+1} - 1 + 2^{k+1}$ by the IH

Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.

So, we have $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly P(k+1).

Alternative way of writing the inductive step

Prove
$$1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$$

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show
$$1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$$

$$1 + 2 + ... + 2^{k} + 2^{k+1} = (1+2+... + 2^{k}) + 2^{k+1}$$

= $2^{k+1} - 1 + 2^{k+1}$ by the IH

Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.

So, we have $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

Prove 1 + 2 + 3 + ... + n = n(n+1)/2

1. Let 1(n) be "HZ+3:.+h=n(n+1)Z

>> BALL CAN NZO LS=0 (0+1)/2=0

PS=0(0+1)/2=0

3. IH.

Prove
$$1 + 2 + 3 + ... + n = n(n+1)/2$$

1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.

Prove 1 + 2 + 3 + ... + n = n(n+1)/2

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.

Prove
$$1 + 2 + 3 + ... + n = (n + 1)/2$$

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **72.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
 - 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
 - 4. Induction Step:

Goal: Show P(k+1), i.e. show
$$1 + 2 + ... + k + (k+1) = \frac{(k+1)(k+2)/2}{(k+1)(k+2)/2}$$

$$(1+2+...+k) + (k+1) = h(h+1) + (h+1) + h(h+1) + 2(h+1)$$

$$= h(h+1) + 2(h+1)$$

Prove 1 + 2 + 3 + ... + n = n(n+1)/2

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show
$$1 + 2 + ... + k + (k+1) = (k+1)(k+2)/2$$

 $1 + 2 + ... + k + (k+1) = (1 + 2 + ... + k) + (k+1)$
 $= k(k+1)/2 + (k+1)$ by IH

Now k(k+1)/2 + (k+1) = (k+1)(k/2 + 1) = (k+1)(k+2)/2. So, we have 1 + 2 + ... + k + (k+1) = (k+1)(k+2)/2, which is exactly P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

Another example of a pattern

•
$$2^0 - 1 = 1 - 1 = 0 = 3 \cdot 0$$

•
$$2^2 - 1 = 4 - 1 = 3 = 3 \cdot 1$$

•
$$2^4 - 1 = 16 - 1 = 15 = 3.5$$

•
$$2^6 - 1 = 64 - 1 = 63 = 3 \cdot 21$$

•
$$2^8 - 1 = 256 - 1 = 255 = 3.85$$

• ...

Prove: $3 \mid (2^{2n} - 1)$ for all $n \ge 0$

1. Let p(n) be "3/B"-1)"
We prode P(n) to o(1 integer n>) by which a Bere Care: (n=0) 30-1

Prove: $3 \mid (2^{2n} - 1) \text{ for all } n \ge 0$

- 1. Let P(n) be "3 | $(2^{2n}-1)$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0):

 $2^{2-0}-1=2^{0}-1=1-1=0=3-0$. P(0) is true

Prove: $3 \mid (2^{2n} - 1) \text{ for all } n \ge 0$

- 1. Let P(n) be "3 | $(2^{2n}-1)$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^{2\cdot 0}-1=1-1=0=3\cdot 0$ Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show
$$3 \mid (2^{2(k+1)}-1)$$

By IH. $3 \mid 2^{2h}-1$: $2^{2h}-1=3m$

For one happen M.

$$2^{2h}-3m+1 = 2^{2(k+1)}=2^{2h+2}$$

$$= (\cdot(3m+1))$$

$$= (\cdot(3m+1$$

Prove: $3 \mid (2^{2n} - 1)$ for all $n \ge 0$

- 1. Let P(n) be "3 | $(2^{2n}-1)$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^{2\cdot 0}-1=1-1=0=3\cdot 0$ Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show
$$P(k+1)$$
, i.e. show $3 \mid (2^{2(k+1)}-1)$

By IH, $3 \mid (2^{2k} - 1)$ so $2^{2k} - 1 = 3j$ for some integer j

So
$$2^{2(k+1)} - 1 = 2^{2k+2} - 1 = 4(2^{2k}) - 1 = 4(3j+1) - 1$$

= $12j+3 = 3(4j+1)$

Therefore $3 \mid (2^{2(k+1)}-1)$ which is exactly P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

Checkerboard Tiling

• Prove that a $2^n \times 2^n$ checkerboard with one square removed can be tiled with:

Checkerboard Tiling

- 1. Let P(n) be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with $\frac{1}{n}$. We prove P(n) for all $n \ge 1$ by induction on n.
- 2. Base Case: n=1

Checkerboard Tiling

- 1. Let P(n) be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with $\frac{1}{n}$. We prove P(n) for all $n \ge 1$ by induction on n.
- 2. Base Case: n=1
- 3. Inductive Hypothesis: Assume P(k) for some arbitrary integer $k \ge 1$
- 4. Inductive Step: Prove P(k+1)

Apply IH to each quadrant then fill with extra tile.