
CSE 311: Foundations of Computing

Lecture 11: Modular Arithmetic, Applications and

Factoring

Check Your Understanding. Which of the following are true?

5 | 1 25 | 5 5 | 0 3 | 2

1 | 5 5 | 25 0 | 5 2 | 3

Last Class: Divisibility

5 | 1 iff 1 = 5k

1 | 5 iff 5 = 1k

25 | 5 iff 5 = 25k

5 | 25 iff 25 = 5k

5 | 0 iff 0 = 5k

0 | 5 iff 5 = 0k

3 | 2 iff 2 = 3k

2 | 3 iff 3 = 2k

For � ∈ ℤ, � ∈ ℤ with � � 0:

� | � ↔ ∃� ∈ ℤ
� � ���

Definition: “a divides b”

To put it another way, if we divide d into a, we get a

unique quotient

and non-negative remainder

Last Class: Division Theorem

q = a div d

Note: r ≥ 0 even if a < 0.
Not quite the same as a%d.

For � ∈ ℤ, � ∈ ℤ with � � 0

there exist unique integers q, r with 0 � � � �

such that � � �� � �.

Division Theorem

r = a mod d

public class Test2 {

public static void main(String args[]) {

int a = -5;

int d = 2;

System.out.println(a % d);

}

}

Last Class: Arithmetic, mod 7

a +7 b = (a + b) mod 7

a ×
7

b = (a × b) mod 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

Last Class: Modular Arithmetic

Check Your Understanding. What do each of these mean?

When are they true?

x ≡ 0 (mod 2)

-1 ≡ 19 (mod 5)

y ≡ 2 (mod 7)

For �, �, � ∈ ℤ with � � 0

� ≡ � mod � ↔ � | (� − �)

Definition: “a is congruent to b modulo m”

This statement is the same as saying “x is even”; so, any x that is

even (including negative even numbers) will work.

This statement is true. 19 - (-1) = 20 which is divisible by 5

This statement is true for y in { ..., -12, -5, 2, 9, 16, ...}. In other

words, all y of the form 2+7k for k an integer.

Modular Arithmetic: A Property

Let �, �, � be integers with � � .

Then, � ≡ � (!"# �) if and only if � !"# � = � !"# �.

Suppose that � ≡ � (mod �).

Then, � | (� – �) by definition of congruence.

So, � – � = �� for some integer � by definition of divides.

Therefore, � � � � ��.

Taking both sides modulo � we get:

� mod � = (� + ��) mod � = � mod �. mod m = b

Suppose that � mod � = � mod �.

By the division theorem, � � �� �
� mod �) and

� � �% �
� mod �) for some integers �,%.

Then, � – � = (�� + (� mod �)) – (�% + (� mod �))

 = �(� – %) + (� mod � – � mod �)

= �(� – %) since � mod � = � mod �

Therefore, � |(� − �) and so � ≡ � (mod �).

Modular Arithmetic: A Property

Let �, �, � be integers with � � .

Then, � ≡ � (!"# �) if and only if � !"# � = � !"# �.

Suppose that � ≡ � (mod �).

Then, � | (� – �) by definition of congruence.

So, � – � = �� for some integer � by definition of divides.

Therefore, � � � � ��.

Taking both sides modulo � we get:

� mod � = (� + ��) mod � = � mod �. mod m = b

Suppose that � mod � = � mod �.

By the division theorem, � � �� �
� mod �) and

� � �% �
� mod �) for some integers �,%.

Then, � – � = (�� + (� mod �)) – (�% + (� mod �))

 = �(� – %) + (� mod � – � mod �)

= �(� – %) since � mod � = � mod �

Therefore, � |(� − �) and so � ≡ � (mod �).

Last Class: mod � function vs ≡ (mod �) predicate

• What we have just shown

– The mod � function takes any � ∈ ℤ and maps
it to a remainder � mod � ∈ {0,1, . . , � − 1}.

– Imagine grouping together all integers that have
the same value of the mod � function

That is, the same remainder in 0,1, . . , � − 1 .

– The ≡ (mod �) predicate compares �, � ∈ ℤ. It
is true if and only if the mod � function has the
same value on � and on �.

That is, � and � are in the same group.

Modular Arithmetic: Addition Property

Let � be a positive integer. If � ≡ � (!"# �) and

* ≡ + (!"# �), then � + * ≡ � + + (!"# �)

Modular Arithmetic: Addition Property

Suppose that � ≡ � (mod �) and , ≡ � (mod �). Unrolling

definitions gives us some � such that � – � = ��,

and some - such that , – � = -�.

Adding the equations together gives us

� � ,� – (� + �) = �(� + -). Now, re-applying the definition

of congruence gives us � � , ≡ � + � (mod �).

Let � be a positive integer. If � ≡ � (!"# �) and

* ≡ + (!"# �), then � + * ≡ � + + (!"# �)

Modular Arithmetic: Multiplication Property

Let � be a positive integer. If � ≡ � (!"# �) and

* ≡ + (!"# �), then �* ≡ �+ (!"# �)

Modular Arithmetic: Multiplication Property

Suppose that � ≡ � (mod �) and , ≡ � (mod �). Unrolling

definitions gives us some � such that � – � = ��,

and some - such that , – � = -�.

Then, � � �� � � and , � -� � �. Multiplying both together

gives us �, �
�� � ��
-� � �� � �-�2 � ��� � �-� � ��.

Re-arranging gives us �, – �� = �(�-� + �� + �-).

Using the definition of congruence gives us �, ≡ �� (mod �).

Let � be a positive integer. If � ≡ � (!"# �) and

* ≡ + (!"# �), then �* ≡ �+ (!"# �)

Example

Let / be an integer.

Prove that /0 ≡ (!"# 1) or /0 ≡ 2 (!"# 1)

Let’s start by looking a a small example:

02 = 0 ≡ 0 (mod 4)

12 = 1 ≡ 1 (mod 4)

22 = 4 ≡ 0 (mod 4)

32 = 9 ≡ 1 (mod 4)

42 = 16 ≡ 0 (mod 4)

Example

Let’s start by looking a a small example:

02 = 0 ≡ 0 (mod 4)

12 = 1 ≡ 1 (mod 4)

22 = 4 ≡ 0 (mod 4)

32 = 9 ≡ 1 (mod 4)

42 = 16 ≡ 0 (mod 4)

It looks like

n ≡ 0 (mod 2) → n2 ≡ 0 (mod 4), and

n ≡ 1 (mod 2) → n2 ≡ 1 (mod 4).

Case 1 (n is even):

Case 2 (n is odd):

Let / be an integer.

Prove that /0 ≡ (!"# 1) or /0 ≡ 2 (!"# 1)

Example

Let’s start by looking a a small example:

02 = 0 ≡ 0 (mod 4)

12 = 1 ≡ 1 (mod 4)

22 = 4 ≡ 0 (mod 4)

32 = 9 ≡ 1 (mod 4)

42 = 16 ≡ 0 (mod 4)

It looks like

n ≡ 0 (mod 2) → n2 ≡ 0 (mod 4), and

n ≡ 1 (mod 2) → n2 ≡ 1 (mod 4).

Case 1 (3 is even):

Suppose 3 ≡ 0 (mod 2).

Then, 3 � 2� for some integer �.

So, 32 �
2��2 � 4�2. So, by

definition of congruence,

32 ≡ 0 (mod 4).

Case 2 (3 is odd):

Suppose 3 ≡ 1 (mod 2�.

Then, 3 � 2� + 1 for some integer �.

So, 32 �
2� � 1�2 � 4�2 � 4� � 1 � 4
�2 � �) + 1.

So, by definition of congruence, 32 ≡ 1 (mod 4).

Let / be an integer.

Prove that /0 ≡ (!"# 1) or /0 ≡ 2 (!"# 1)

• Represent integer 5 as sum of powers of 2:

If ∑ �727 89:
7;< where each �= ∈ {0,1}

then representation is bn-1...b2 b1 b0

99 = 64 + 32 + 2 + 1

18 = 16 + 2

• For n = 8:

99: 0110 0011

18: 0001 0010

n-bit Unsigned Integer Representation

Sign-Magnitude Integer Representation

3-bit signed integers

Suppose that −289: � 5 � 289:

First bit as the sign, 3 − 1 bits for the value

99 = 64 + 32 + 2 + 1

18 = 16 + 2

For n = 8:

99: 0110 0011

-18: 1001 0010

Any problems with this representation?

Two’s Complement Representation

3 bit signed integers, first bit will still be the sign bit

Suppose that 0 ≤ 5 < 289: ,

5 is represented by the binary representation of 5

Suppose that 0 ≤ 5 ≤ 289: ,

−5 is represented by the binary representation of 28 − 5

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For n = 8:
99: 0110 0011
-18: 1110 1110

Key property: Twos complement representation of any number >
is equivalent to > !"# 0/ so arithmetic works !"# 0/

Sign-Magnitude vs. Two’s Complement

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1111 1110 1101 1100 1011 1010 1001 0000 0001 0010 0011 0100 0101 0110 0111

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

Sign-bit

Two’s complement

Two’s Complement Representation

• For , −5 is represented by the

binary representation of 28 − 5

– That is, the two’s complement representation of

any number ? has the same value as ? modulo 23.

• To compute this: Flip the bits of 5 then add 1:

– All 1’s string is 28 − 1, so

Flip the bits of 5 ≡ replace 5 by 28 � 1 � 5

Then add 1 to get 28 � 5

Basic Applications of mod

• Hashing

• Pseudo random number generation

• Simple cipher

These applications work well because of how we can

solve equations involving mods

– To understand that we need a bit more number theory…

Hashing

Scenario:

Map a small number of data values from a large

domain 0, 1, … , A � 1 ...

...into a small set of locations 0,1, … , 3 � 1 so

one can quickly check if some value is present

• hash 5 �
�5 � �� mod E for a prime E

close to 3 and values � and �

Pseudo-Random Number Generation

Linear Congruential method

58F: = � 58 + , mod �

Choose random 5<, �, ,, � and produce

a long sequence of 58’s

Simple Ciphers

• Caesar cipher, A = 1, B = 2, . . .

– HELLO WORLD

• Shift cipher

– f(p) = (p + k) mod 26

– f-1(p) = (p – k) mod 26

• More general

– f(p) = (ap + b) mod 26

Primality

An integer p greater than 1 is called prime if the

only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not

prime is called composite.

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a

unique prime factorization

48 = 2 • 2 • 2 • 2 • 3

591 = 3 • 197

45,523 = 45,523

321,950 = 2 • 5 • 5 • 47 • 137

1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803

Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes

and call the full list E:, EG, … , E8.

Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes

and call the full list E:, EG, … , E8.

Define the number H = E:· EG · EJ · ⋯ · E8 and let

L = H + 1.

Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list E:, EG, … , E8.

Define the number H = E:· EG · EJ · ⋯ · E8 and let
L = H + 1.

Case 1: L is prime: Then L is a prime different from
all of E:, EG, … , E8 since it is bigger than all of them.

Case 2: L > 1 is not prime: Then L has some prime
factor E (which must be in the list). Therefore E|H
and E|L so E| L – H which means that E|1.

Both cases are contradictions so the assumption is
false.

Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list E:, EG, … , E8.

Define the number H = E:· EG · EJ · ⋯ · E8 and let
L = H + 1.

Case 1: L is prime: Then L is a prime different from
all of E:, EG, … , E8 since it is bigger than all of them.

Case 2: L > 1 is not prime: Then L has some prime
factor E (which must be in the list). Therefore E|H
and E|L so E| L – H which means that E|1.

Both cases are contradictions so the assumption is
false.

Famous Algorithmic Problems

• Primality Testing

– Given an integer 3, determine if 3 is prime

• Factoring

– Given an integer 3, determine the prime

factorization of 3

Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077

285356959533479219732245215172640050726

365751874520219978646938995647494277406

384592519255732630345373154826850791702

612214291346167042921431160222124047927

4737794080665351419597459856902143413

12301866845301177551304949583849627207728535695953347

92197322452151726400507263657518745202199786469389956

47494277406384592519255732630345373154826850791702612

21429134616704292143116022212404792747377940806653514

19597459856902143413

334780716989568987860441698482126908177047949837

137685689124313889828837938780022876147116525317

43087737814467999489

367460436667995904282446337996279526322791581643

430876426760322838157396665112792333734171433968

10270092798736308917

Greatest Common Divisor

GCD(a, b):

Largest integer � such that � ∣ � and � ∣ �

• GCD(100, 125) =

• GCD(17, 49) =

• GCD(11, 66) =

• GCD(13, 0) =

• GCD(180, 252) =

GCD and Factoring

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1) • 11min(1,0) • 13min(0,1)

Factoring is expensive!

Can we compute GCD(a,b) without factoring?

Useful GCD Fact

If a and b are positive integers, then

gcd(a,b) = gcd(b, a mod b)

Useful GCD Fact

If a and b are positive integers, then

gcd(a,b) = gcd(b, a mod b)

Proof:

By definition of mod, � = �� + (� mod �) for some integer � = � div �.

Let � = gcd (�, �). Then �|� and �|� so � = �� and � = -�

for some integers � and -.

Therefore (� mod �) = � – �� = �� – �-� = (� – �-)�.

So, �|(� mod �) and since �|� we must have � ≤ gcd (�, � mod �).

Now, let R = gcd (�, � mod �). Then R|� and R |(� mod �) so

� = �R and (� mod �) = 3R for some integers � and 3.

Therefore � = �� + (� �S� �) = ��R + 3R = (�� + 3)R.

So, R|� and since R|� we must have R ≤ gcd (�, �).

It follows that gcd (�, �) = gcd (�, � mod �).

Another simple GCD fact

If a is a positive integer, gcd(a,0) = a.

