CSE 311: Foundations of Computing

Lecture 11: Modular Arithmetic, Applications and Factoring

Please pick up solutions for HW 3
Last Class: Divisibility

Definition: “a divides b”

For $a \in \mathbb{Z}$, $b \in \mathbb{Z}$ with $a \neq 0$:

$a \mid b \iff \exists k \in \mathbb{Z} \ (b = ka)$

Check Your Understanding. Which of the following are true?

- $5 \mid 1$ \hspace{1cm} $25 \mid 5$ \hspace{1cm} $5 \mid 0$ \hspace{1cm} $3 \mid 2$
 - $5 \mid 1$ iff $1 = 5k$
 - $25 \mid 5$ iff $5 = 25k$
 - $5 \mid 0$ iff $0 = 5k$
 - $3 \mid 2$ iff $2 = 3k$

- $1 \mid 5$ \hspace{1cm} $5 \mid 25$
 - $1 \mid 5$ iff $5 = 1k$
 - $5 \mid 25$ iff $25 = 5k$
Last Class: Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d > 0$

there exist unique integers q, r with $0 \leq r < d$

such that $a = dq + r$.

To put it another way, if we divide d into a, we get a unique quotient $q = a \mathsf{ div } d$

and non-negative remainder $r = a \mathsf{ mod } d$.

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
}
```

Note: $r \geq 0$ even if $a < 0$.
Not quite the same as $a%d$.

--- jGRASP exec: java Test2
-1

--- jGRASP: operation complete.
Last Class: Arithmetic, mod 7

\[a +_7 b = (a + b) \mod 7 \]
\[a \times_7 b = (a \times b) \mod 7 \]

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Last Class: Modular Arithmetic

Definition: “a is congruent to b modulo m”

For \(a, b, m \in \mathbb{Z} \) with \(m > 0 \)

\[
a \equiv b \pmod{m} \iff m \mid (a - b)
\]

Check Your Understanding. What do each of these mean? When are they true?

\(x \equiv 0 \pmod{2} \)

This statement is the same as saying “x is even”; so, any x that is even (including negative even numbers) will work.

\(-1 \equiv 19 \pmod{5} \)

This statement is true. \(19 - (-1) = 20 \) which is divisible by 5

\(y \equiv 2 \pmod{7} \)

This statement is true for \(y \) in \{ ..., -12, -5, 2, 9, 16, ... \}. In other words, all \(y \) of the form \(2 + 7k \) for \(k \) an integer.
Modular Arithmetic: A Property

Let \(a, b, m \) be integers with \(m \geq 0 \).
Then, \(a \equiv b \pmod{m} \) if and only if \(a \mod m = b \mod m \).

Suppose that \(a \equiv b \pmod{m} \).
Then, \(m \mid (a - b) \) by definition of congruence.
So, \(a - b = km \) for some integer \(k \) by definition of divides.
Therefore, \(a = b + km \).
Taking both sides modulo \(m \) we get:
\[
\text{a mod } m = (b + km) \mod m = b \mod m.
\]
Modular Arithmetic: A Property

Let \(a, b, m \) be integers with \(m > 0 \).
Then, \(a \equiv b \pmod{m} \) if and only if \(a \mod m = b \mod m \).

Suppose that \(a \equiv b \pmod{m} \).

Suppose that \(a \mod m = b \mod m \).
By the division theorem, \(a = mq + (a \mod m) \) and \(b = ms + (b \mod m) \) for some integers \(q,s \).
Then, \(a - b = (mq + (a \mod m)) - (ms + (b \mod m)) \)
\[= m(q-s) + (a \mod m - b \mod m)\]
\[= m(q-s) \text{ since } a \mod m = b \mod m\]
Therefore, \(m |(a - b) \) and so \(a \equiv b \pmod{m} \).
What we have just shown

- The mod m function takes any $a \in \mathbb{Z}$ and maps it to a remainder $a \mod m \in \{0, 1, \ldots, m - 1\}$.

- Imagine grouping together all integers that have the same value of the mod m function. That is, the same remainder in $\{0, 1, \ldots, m - 1\}$.

- The $\equiv \ (\mod m)$ predicate compares $a, b \in \mathbb{Z}$. It is true if and only if the mod m function has the same value on a and on b. That is, a and b are in the same group.
Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$.

Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$.

Let integers k, l s.t.

\[a - b = km \quad \text{and} \quad c - d = lm \]

\[a = b + km \quad \text{and} \quad c = d + lm \]

\[a + c = b + d + km + lm = b + d + (k + l)m \]

\[(a + c) - (b + d) = (k + l)m \]

\[m \mid ((a + c) - (b + d)) \]

\[a + c \equiv b + d \pmod{m} \]

by def.
Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$.

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that $a - b = km$, and some j such that $c - d = jm$.

Adding the equations together gives us $(a + c) - (b + d) = m(k + j)$. Now, re-applying the definition of congruence gives us $a + c \equiv b + d \pmod{m}$.
Let \(m \) be a positive integer. If \(a \equiv b \pmod{m} \) and \(c \equiv d \pmod{m} \), then \(ac \equiv bd \pmod{m} \)

Suppose \(a \equiv b \pmod{m} \) and \(c \equiv d \pmod{m} \).

\[a = b + km \quad \text{and} \quad c = d + lm \]

for some integers \(k \) and \(l \).

\[ac = (b + km)(d + lm) \]

\[= bd + blm + kmd + klm^2 \]

\[= bd + m(bl + kd + klm) \]

\[ac - bd = m(bl + kd + klm) \text{ intg} \]

\[\therefore m | (ac - bd) \quad \therefore ac \equiv bd \pmod{m} \]
Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$.

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that $a - b = km$, and some j such that $c - d = jm$.

Then, $a = km + b$ and $c = jm + d$. Multiplying both together gives us $ac = (km + b)(jm + d) = k jm^2 + kmd + bmj + bd$.

Re-arranging gives us $ac - bd = m(kjm + kd + bj)$. Using the definition of congruence gives us $ac \equiv bd \pmod{m}$.

Example

Let n be an integer.
Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Let's start by looking at a small example:

- $0^2 = 0 \equiv 0 \pmod{4}$
- $1^2 = 1 \equiv 1 \pmod{4}$
- $2^2 = 4 \equiv 0 \pmod{4}$
- $3^2 = 9 \equiv 1 \pmod{4}$
- $4^2 = 16 \equiv 0 \pmod{4}$

Any integer n is either even or odd:

- **Even**: $n = 2k$ for some integer k.

 $n^2 = (2k)^2 = 4k^2 \equiv 0 \pmod{4}$

- **Odd**: $n = 2k+1$ for some integer k.

 $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 \equiv 1 \pmod{4}$

Both are true.

\[\square \]
Let n be an integer.
Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Case 1 (n is even):

Let’s start by looking at a small example:

\[
\begin{align*}
0^2 &= 0 \equiv 0 \pmod{4} \\
1^2 &= 1 \equiv 1 \pmod{4} \\
2^2 &= 4 \equiv 0 \pmod{4} \\
3^2 &= 9 \equiv 1 \pmod{4} \\
4^2 &= 16 \equiv 0 \pmod{4}
\end{align*}
\]

It looks like

\[n \equiv 0 (\text{mod } 2) \rightarrow n^2 \equiv 0 \pmod{4}, \ \text{and} \ \]
\[n \equiv 1 (\text{mod } 2) \rightarrow n^2 \equiv 1 \pmod{4}.
\]

Case 2 (n is odd):
Example

Let n be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Let's start by looking at a small example:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$0^2 = 0$</td>
<td>$1^2 = 1$</td>
<td>$2^2 = 4$</td>
<td>$3^2 = 9$</td>
</tr>
<tr>
<td>$\equiv 0 \pmod{4}$</td>
<td>$\equiv 1 \pmod{4}$</td>
<td>$\equiv 0 \pmod{4}$</td>
<td>$\equiv 1 \pmod{4}$</td>
</tr>
</tbody>
</table>

It looks like

$n \equiv 0 \pmod{2} \rightarrow n^2 \equiv 0 \pmod{4}$, and

$n \equiv 1 \pmod{2} \rightarrow n^2 \equiv 1 \pmod{4}$.

Case 1 (n is even):

Suppose $n \equiv 0 \pmod{2}$.
Then, $n = 2k$ for some integer k.
So, $n^2 = (2k)^2 = 4k^2$. So, by definition of congruence,
$n^2 \equiv 0 \pmod{4}$.

Case 2 (n is odd):

Suppose $n \equiv 1 \pmod{2}$.
Then, $n = 2k + 1$ for some integer k.
So, $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$.
So, by definition of congruence, $n^2 \equiv 1 \pmod{4}$.
n-bit Unsigned Integer Representation

• Represent integer \(x \) as sum of powers of \(2 \):

\[
\sum_{i=0}^{n-1} b_i 2^i \quad \text{where each } b_i \in \{0,1\}
\]

then representation is \(b_{n-1} \ldots b_2 b_1 b_0 \)

99 = 64 + 32 + 2 + 1
18 = 16 + 2

• For \(n = 8 \):

99: 0110 0011
18: 0001 0010
Sign-Magnitude Integer Representation

n-bit signed integers

Suppose that $-2^{n-1} < x < 2^{n-1}$

First bit as the sign, $n - 1$ bits for the value

$99 = 64 + 32 + 2 + 1$
$18 = 16 + 2$

For $n = 8$:

99: 0110 0011
-18: 1001 0010

Any problems with this representation?
Two’s Complement Representation

n bit signed integers, first bit will still be the sign bit

Suppose that $0 \leq x < 2^{n-1}$, x is represented by the binary representation of x

Suppose that $0 \leq x \leq 2^{n-1}$, $-x$ is represented by the binary representation of $2^n - x$

Key property: Twos complement representation of any number y is equivalent to $y \mod 2^n$ so arithmetic works $\mod 2^n$

$99 = 64 + 32 + 2 + 1$
$18 = 16 + 2$

For $n = 8$:

- 99: 0110 0011
- -18: 1110 1110

-2^{n-1}

$2^{n-1} - 1$
Sign-Magnitude vs. Two’s Complement

Sign-bit

Two’s complement \text{mod 16}
Two's Complement Representation

• For $0 < x \leq 2^{n-1}$, $-x$ is represented by the binary representation of $2^n - x$.

 That is, the two’s complement representation of any number y has the same value as y modulo 2^n.

• To compute this: Flip the bits of x then add 1:

 All 1’s string is $2^n - 1$, so

 Flip the bits of $x \equiv$ replace x by $2^n - 1 - x$

 Then add 1 to get $2^n - x$
Basic Applications of mod

• Hashing
• Pseudo random number generation
• Simple cipher

These applications work well because of how we can solve equations involving mods
 – To understand that we need a bit more number theory...
Hashing

Scenario:

Map a small number of data values from a large domain \(\{0, 1, \ldots, M - 1\} \) ...
...into a small set of locations \(\{0, 1, \ldots, n - 1\} \) so one can quickly check if some value is present

- \(\text{hash}(x) = (ax + b) \mod p \) for a prime \(p \) close to \(n \) and values \(a \) and \(b \)
Pseudo-Random Number Generation

Linear Congruential method

\[x_{n+1} = (a \cdot x_n + c) \mod m \]

Choose random \(x_0, a, c, m \) and produce a long sequence of \(x_n \)'s
Simple Ciphers

• Caesar cipher, \(A = 1, B = 2, \ldots \)
 - HELLO WORLD

• Shift cipher
 - \(f(p) = (p + k) \mod 26 \)
 - \(f^{-1}(p) = (p - k) \mod 26 \)

• More general
 - \(f(p) = (ap + b) \mod 26 \)
An integer p greater than 1 is called *prime* if the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is called *composite*.
Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a unique prime factorization

\[
\begin{align*}
48 & = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \\
591 & = 3 \cdot 197 \\
45,523 & = 45,523 \\
321,950 & = 2 \cdot 5 \cdot 5 \cdot 47 \cdot 137 \\
1,234,567,890 & = 2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803
\end{align*}
\]
Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list p_1, p_2, \ldots, p_n.

The product $p_1 p_2 p_3 \cdots p_n + 1$ is divisible by all $p_1, p_2, \ldots, p_n + 1$.

Can $1, p_1, p_2, \ldots, p_n + 1$ be prime?
Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list p_1, p_2, \ldots, p_n.

Define the number $P = p_1 \cdot p_2 \cdot p_3 \cdot \cdots \cdot p_n$ and let $Q = P + 1$.
Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list \(p_1, p_2, \ldots, p_n \).

Define the number \(P = p_1 \cdot p_2 \cdot p_3 \cdot \cdots \cdot p_n \) and let \(Q = P + 1 \).

Case 1: \(Q \) is prime: Then \(Q \) is a prime different from all of \(p_1, p_2, \ldots, p_n \) since it is bigger than all of them.

Case 2: \(Q > 1 \) is not prime: Then \(Q \) has some prime factor \(p \) (which must be in the list). Therefore \(p | H \) and \(p | L \) so \(p | L – H \) which means that \(p | 1 \).

Both cases are contradictions so the assumption is false.
Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list p_1, p_2, \ldots, p_n.

Define the number $P = p_1 \cdot p_2 \cdot p_3 \cdot \cdots \cdot p_n$ and let $Q = P + 1$.

Case 1: Q is prime: Then Q is a prime different from all of p_1, p_2, \ldots, p_n since it is bigger than all of them.

Case 2: $Q > 1$ is not prime: Then Q has some prime factor p (which must be in the list). Therefore $p|P$ and $p|Q$ so $p|(Q - P)$ which means that $p|1$.

Both cases are contradictions so the assumption is false.
Famous Algorithmic Problems

• Primality Testing
 – Given an integer n, determine if n is prime

• Factoring
 – Given an integer n, determine the prime factorization of n
Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413
Greatest Common Divisor

GCD(a, b):

Largest integer \(d \) such that \(d \mid a \) and \(d \mid b \)

- \(\text{GCD}(100, 125) = 25 \)
- \(\text{GCD}(17, 49) = 1 \)
- \(\text{GCD}(11, 66) = 11 \)
- \(\text{GCD}(13, 0) = 13 \)
- \(\text{GCD}(180, 252) = 36 \)
GCD and Factoring

\[a = 2^3 \times 3 \times 5^2 \times 7 \times 11 = 46,200 \]
\[b = 2 \times 3^2 \times 5^3 \times 7 \times 13 = 204,750 \]

\[\text{GCD}(a, b) = 2^{\min(3,1)} \times 3^{\min(1,2)} \times 5^{\min(2,3)} \times 7^{\min(1,1)} \times 11^{\min(1,0)} \times 13^{\min(0,1)} \]

Factoring is expensive!

Can we compute \(\text{GCD}(a,b) \) without factoring?
Useful GCD Fact

If a and b are positive integers, then
\[\gcd(a, b) = \gcd(b, a \mod b) \]
Useful GCD Fact

If a and b are positive integers, then
\[\gcd(a,b) = \gcd(b, a \mod b) \]

Proof:
By definition of mod, $a = qb + (a \mod b)$ for some integer $q = a \div b$.

Let $d = \gcd(a,b)$. Then $d \mid a$ and $d \mid b$ so $a = kd$ and $b = jd$ for some integers k and j.

Therefore $(a \mod b) = a - qb = kd - qjd = (k - qj)d$.
So, $d \mid (a \mod b)$ and since $d \mid b$ we must have $d \leq \gcd(b, a \mod b)$.

Now, let $e = \gcd(b, a \mod b)$. Then $e \mid b$ and $e \mid (a \mod b)$ so $b = me$ and $(a \mod b) = ne$ for some integers m and n.

Therefore $a = qb + (a \mod b) = qme + ne = (qm + n)e$.
So, $e \mid a$ and since $e \mid b$ we must have $e \leq \gcd(a,b)$.

It follows that $\gcd(a,b) = \gcd(b, a \mod b)$. ■
Another simple GCD fact

If a is a positive integer, $\gcd(a,0) = a$.