CSE 311: Foundations of Computing

Lecture 11: Modular Arithmetic, Applications and
Factoring
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Last Class: Divisibility

Definition: “a divides b”

Fora € Z,b € Z with a # 0:
a|b<—>§LcEZ(b=ka)

\
Check Your Understanding. Which of the following are true?

5|1 25 | 5 3|2

5] 1iff1 =5k 25 | 5iff 5 =25k 5|10iff0=58k 3] 2iff2=3k

@ @ 0|5 2|3

1| 5iff5=1k 5| 25iff 25 =5k O|5iff5=0k 2| 3iff3 =2k




Last Class: Division Theorem

Division Theorem

Fora € Z,d € Z withd > 0

there exist unigue integers g, rwith 0 < r < 91/
such that a =’ﬂﬂ + 7.

\

To put it another way, if we divide dinto a, we get a
unique quotient | g = a div g \W"
and non-negative remainder |r= a mod 9’/\4/\

public class Test2 {

----JGRASP exec: java Test2
public static void main(String args[]) { -1
int a = -5; .
. ----JGRASP: operation complete.
int d = 2; '
System.out.println(a % d);
} Note: r= 0 evenifa < 0.

Not quite the same as a%d.




Last Class: Arithmetic, mod 7

(@a+ b) mod 7
(@ xXb) mod 7

a+,b

ax;b




Last Class: Modular Arithmetic

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0

a=b(modm) & m|(a —b)
. JAN /

\—
Check Your Understanding. What do each of these mean?
When are they true?

X =0 (mod 2)

This statement is the same as saying “x is even”; so, any x that is
even (including negative even numbers) will work.

-1 =19 (mod 5)
This statement is true. 19 - (-1) = 20 which is divisible by 5
y =2 (mod 7)

This statement is true for yin{...,-12,-5, 2,9, 16, ...}. In other
words, all y of the form 2+7k for k an integer.



Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if amod m = b mod m.

K—-———/
Suppose that a = b (mod m).
Then, m@by definition of congruence. \
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.

Taking both sides modulo m we get:
amodm = (b + km) mod m = b mod m.
e -

_ ©—> ]



Modular Arithmetic: A Property

Let a, b, m be integers with m > 0.
Then, a = b (mod m) if and only if amod m = b mod m.

Suppose that a = b (mod m).

Suppose that a mod m = b mod m.
By the division theorem, a = mq + (a mod m) and }
Btmgj (b mod m) for some integers g
Then,a -b = (mq + (a mod m)) - (ms + (b mod m))
= m(q-s) + (amodm- b modl’n)’/'/O
= m(q-s)sinceamodm = bmodm
Therefore, m |(a fE)~and so a = b (mod m).




Last Class: mod m function vs = (mod m) predicate

« What we have just shown

— The mod m function takes any a € Z and maps
it to a remainder a mod m € {0,1,..,m — 1}.

— Imagine grouping together all integers that have
the same value of the mod m function

That is, the same remainder in {0,1,..,m — 1}.

— Th@mod m) predicate compares a,b € Z. It
is true if and only if the mod m function has the
same value on a and on b.

That is, a and b are in the same group.



Modular Arithmetic: Addition Property

Let m be a positive integer. If a = b (mod m) and
c = d(modm),thena+c = b+ d (modm)
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Modular Arithmetic: Addition Property

b (mod m) and

Let m be a positive integer. Ifa =
= b+d(modm)

c = d(modm),thena+c

Suppose thata = b (mod m) and ¢ = d (mod m). Unrolling
definitions gives us some k such thata - b = km,
and some j such thatc -d = jm.

Adding the equations together gives us
(a+c)- (b+d) = m(k +j). Now, re-applying the definition
of congruence givesusa +c¢ = b + d (mod m).



Modular Arithmetic: Multiplication Property

Let m be a positive intege a=-h (mod m) and
c = d (mod m), thenfao = bd (mod m)




Modular Arithmetic: Multiplication Property

Let m be a positive integer. If a = b (mod m) and
¢ =d (mod m), then ac = bd (mod m)

Suppose that a = b (mod m) and ¢ = d (mod m). Unrolling
definitions gives us some k such thata - b = km,
and some j such thatc -d = jm.

Then,a = km + b and ¢ = jm + d. Multiplying both together
givesus ac = (km+ b)(jm + d) = kjm? + kmd + bjm + bd.

Re-arranging gives us ac - bd = m(kjm + kd + bj).
Using the definition of congruence gives us ac = bd (mod m).



Example

Let n be an integer.
Prove that n* = 0 (mod 4) or n®* = 1 (mod 4)
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Example

Let n be an integer.
Prove that n? = 0 (mod 4) or n? = 1 (mod 4)

Let’s start by looking a a small example:
02=0 =0(mod 4)
12=1 =1 (mod4)
22=4 =0(mod 4)
32=9 =1 (mod 4)
42 =16 =0 (mod 4)

Case 1 (nis even):

It looks like
Case 2 (nis odd): n =0 (mod 2) — n2 =0 (mod 4), and
n =1 (mod2) — n2 =1 (mod 4).



Example

Let n be an integer.

Prove that n? = 0 (mod 4) or n? = 1 (mod 4)

Let’s start by looking a a small example:
02=0 =0(mod 4)
12=1 =1 (mod4)

Case 1 (n is even):
Suppose n = 0 (mod 2).

Then, n = 2k for some integer k. 22=4 =0 (mod 4)
So, n? = (2k)2 = 4k?. So, by 32=9 =1 (mod 4)
definition of congruence, 42=16=0 (mod 4)
n? = 0 (mod 4).
It looks like
Case 2 (n is odd): n =0 (mod 2) — n? =0 (mod 4), and
Suppose n = 1 (mod 2)_ nes 1 (mOd 2) — n2 = 1 (mOd 4).

Then, n = 2k + 1 for some integer k.
So,n?=Rk+1)2=4k*+4k+1=4(k*+ k) + 1.
So, by definition of congruence, n* = 1 (mod 4).



n-bit Unsigned Integer Representation

* Represent integer x as sum of powers of 2:
If ¥7°,' b;2" where each b, € {0,1}

then representationis b, ,...b, b, b,

—t

99=64+32+2+1
18=16+2

* Forn= §I L
@%b €Y
99: 0 ﬁ’o’omf
18: 0001 0010



Sign-Magnitude Integer Representation

b ]
n-bit signed integers | 2 ht! 4/74
Suppose that —22=+ < x < 2™~ /1O o o
First bit as the sign, n — 1 bits for the value

9 =64+32+2 + 1

18 =16 + 2 )

1%
Forn = 8: l o © 970
99: 0110 0011 P
18: 1001 0010 © 0100
0




Two’s Complement Representation

n bit signed integers, first bit will still be the sign bit

uppose that 0 < x < 21
Ié\ils represented by the bmary representatlon of x

uppose that 0 < x < 21

—x IS represented by the binary representa’uon of 2™ —
N~— ['\

P
Key property: Twos complement representation m
IS equivalent to y mod 2" so arithmetic workg mod 2™

___
99 =64+32+2+1 pel N~ |
18 =16 + 2 -2 )~

ool oo S

Forn = 8: ¢ (110 ] o

(¢ 11
99: 01100011

-18: 11101110 000D V02D



Sign-Magnitude vs. Two’'s Complement

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1111 1110 1101 1100 1011 1010 1001 OOOO 0001 0010 0OO11 O0O100 0101 0110 0111

Sign-bit

¢ 9 v I3y

-8 -7 -6 - - -2 -1 0 1 2 3 4 5 6 7
~—
1000 1001 1010 1011 1100 1101 1110 1111 OO0 0001 0010 0011 0100 0101 0110 0111
>—r

Two’s complement N

ud | (o



Two’s Complement Representation

e For g <« x <271, —Xxis represinted by the

binary representation o@" — X

— That is, the two’s complement representation of
any number y has the same value as y modulo 2",

RAREERE 2h) - %
* To compute this: Flip the bits of x then add 1:
— All 1’s string is 2™ — 1, so

Flip the bits of x =replace x by 2"@ — X

Then add 1 to get 2™ — x Nl
N ofliol 170

00! d0 01



Basic Applications of mod

 Hashing
 Pseudo random number generation
* Simple cipher

These applications work well because of how we can
solve equations involving mods

— To understand that we need a bit more number theory...



Hashing

Scenario:

Map a small number of data values from a large
domain {0,1,..,M — 1} ...

~—~
...into a small set of locations {0,1, ... @9 1} so
one can quickly check if some value is present

* hash(x) = (ax + b) mod p fora prime p
T fcloseTto n and values a and b



Pseudo-Random Number Generation

Linear Congruential method

AN

Xn+q1 = (@ x, + ) mod )

Choose random x, a, ¢, m and produce
a long sequence of x,,’s



Simple Ciphers

« Caesar cipher, A=1,B=2,...
— HELLO WORLD

* Shift cipher
— f(p) = (p + k) mod 26
—f1(p) = (p — k) mod 26
* More general
—f(p) = (ap + b) mod 26



Primality

An integer p greater than 1 is called prime if the
only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not
prime is called composite.



Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a
unique prime factorization

48 = 202223

591 =3+ 197

45,523 = 45,523

321,950 =25+5°47 137
1,234,567,890 =233+ 5+ 3,607 * 3,803



Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list p{, p,, ..., D;,-
\—f J V. /él\ 1;&7 a ”
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Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list p{, p,, ..., D;,-

Define the number P = p;:-p, - p3 : -+ + p,, and let
Q=P+1.



Euclid’s Theorem

There are an infinite number of primes.
Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list p{, p,, ..., D;,.

Define the number P = p;:-p, - p3 - -+ + p,, and let
Q=P+1.

Case 1: O is prime: Then Q is a prime different from
all of 4, p,, ..., p,, since it is bigger than all of them.

(yn L : QO & cco'-vvgvn\-1
-



Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list p{, p,, ..., D;,.

Define the number P = p;:-p, - p3 - -+ + p,, and let
Q=P+1

Case 1: Q is prime: Then Q is t from
all of 4, p,, ..., p,, since it is bigger than all of them.

Case 2: ) > 1 is not prime: Then () has some prime
factor p (which must be in the list). Therefore p|P
and p|Q so p|(Q - P) which means that : I\O\L

Both cases are contradictions so the ase\ﬁr\rﬂqws \
false. \



Famous Algorithmic Problems

* Primality Testing @(

— Given an integer n, determine if n is prime
* Factoring

— Given an integer n, determine the prime
factorization of n



Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413



12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514
19597459856902143413

e
e

334780716989568987860441698482126908177047949837
13768568912431388982883793878002287614 /7116525317
43087737814467999489

N

367460436667995904282446337996279526322791581643
430876426760322838157396665112792333734171433968
10270092798736308917



Greatest Commmon Divisor

GCD(a, b):
Largest integer d suchthatd |aand d | b

. GCD(100, 125) =Z7/
« GCD(17,49) = l
« GCD(11, 66) | |

. GCD(13,0) = [

. GCD(180 252) = 3 [
2-8Y

7.6 YL 22U

21(94



GCD and Factoring

a=23-/§-52-7-11 = 46,200
b=2e32+53+7+13=204750

J

GCD(a, b) = 2min@,1) « 3min(1,2) « 5MIn(2,3) ¢ 7min(1,1) o {{min(1,0) + 1 3Min(0,1)

Factoring is expensive!
Can we compute GCD(a,b) without factoring?



Useful GCD Fact

If a and b are positive integers, then
gcd(a,b) = ged(b, a mod b)



Useful GCD Fact

If a and b are positive integers, then
gcd(a,b) = ged(b, a mod b)

Proof:
By definition of mod, a = gb + (a mod b) for some integer ¢ = a div b.

Letd = gcd(a,b). Thend|aandd|bsoa = kdand b = jd
for some integers k and j.

Therefore (amod b) = a-gb = kd -qjd = (k-qj)d.
So, d|(a mod b) and since d|b we must have d < gcd(b,a mod b).

Now, let e = gcd(b,a mod b). Then e|b and e [(a mod b) so
b = me and (a mod b) = ne for some integers m and n.

Therefore a = gb + (amod b) = qme + ne = (gqm + n)e.
So, e|a and since e|b we must have e < gcd(a, b).

It follows that gcd(a, b) = ged(b,a mod b). B



Another simple GCD fact

If a is a positive integer, gcd(a,0) = a.



