CSE 311: Foundations of Computing

Lecture 9: English Proofs, Strategies, Set Theory

... LETs ASSUME THERE EXISTS
SOME FUNCTION Fiab,c..) LHICH
PRODUCES THE CORRELT ANSLER-

HANG ON.

THIS 15 GOING TO BE

ONE OF THOSE. LIEIRD
DARK-MAGIC PROOFS,
INT IT? I CAN TELL.

\

¥

LHAT? NO, NO, ITS A
PERFECTLY SENSIBLE
CHAIN OF REASONING.

)

\*‘
=

NOW), LET'S ASSUME THE CORRECT
ANSUER LILL EVENTUALLY BE

WRITTEN ON THIS BOARD AT THE
COORDINATES (%, Y). IF WJE—




Last class: Inference Rules for Quantifiers

P(c) for some c . Vx P(x)
Intro 3 Elim V
Ix P(x) ~ P(a) for any a
~——'Let a be arbitrary*”...P(a)  [Elim3 3x P(x)
Vx P(x) = P(c) for some special** c
*in the domain of P. No other ** ¢ jsa NEW name.

name in P depends on a List all dependencies for c.




Even(x) =3dy (x=2y)
Last class: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 3dy(a=2y) Definition of Even
2.3 a=2b Elim 3: b special depends on a
2.4 a’=4b’=2(2b?) Algebra
2.5 3y (a?=2y) Intro 3 rule
2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct proof rule

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) =3y (x=2y)
Last Class: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove “The square of every even integer is even.”

Proof: Let a be an arbitrary 1. Let a be an arbitrary integer

even integer. 2.1 Even(a) Assumption
Then, by definition, a = 2b 2.2 Ty (a=2y) Definition
for some integer b 23 a=2b b special depends on a

(depending on a).

Squaring both sides, we get 2.4 a%=4b?=2(2b?) Algebra
a?= 4b2 = 2(2b?).

Since 2b? is an integer, by 2.5 3y (a’=2y)

definition, aZis even. 2.6 Even(a?) Definition
Since a was arbitrary, it 2. Even(a)—Even(a?)

follows that the square of 3. Vx(Even(x)—Even(x?))

every even number is even. i



Proofs

 Formal proofs follow simple well-defined rules and
should be easy for a machine to check
— as assembly language is easy for a machine to execute

* English proofs correspond to those rules but are
designhed to be easier for humans to read

— also easy to check with practice
(almost all actual math and theory in CS is done this way)

— English proof is correct if the reader believes they could
translate it into a formal proof
(the reader is the “compiler” for English proofs)




Predicate Definitions

Even and Odd  [Even(x) =3y (x = 2y)

Odd(x)=3y (x =2y + 1)

Domain of Discourse

Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—Even(x+y))




Predicate Definitions

Domain of Discourse

Even and Odd  [Even(x) =3y (x = 2y)

Integers

Odd(x)=3y (x =2y + 1)

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—Even(x+y))

5. Vx Vy ((0dd(x) A Odd(y)) — Even(x+y))



Predicate Definitions

Domain of Discourse

Even and Odd  [Even(x) =3y (x = 2y)

Integers

Odd(x)=3y (x =2y + 1)

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—Even(x+y))

5. Yu Vv ((0dd(u) A Odd(v)) — Even(u+v))



Predicate Definitions

Even(x) = 3y (x = 2y)
Even and Odd Odd(x) = 3y (x = 2y + 1)

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—Even(x+y))

Let x and y be arbitrary integers. 1. Let x be an arbitrary integer

b “\0 Vb(‘-’ 'fbu\,' kxgd(o 2. Letyb%a}r} ar?)ii;?or(yxi/n?%e&‘l(?) A’I;V\/

’7~(7. EvinXiy/

- " \’\“7 O eren 3. (0dd(x) A 0dd(y)) — Even(x+y)
Since x and y were arbitrary, the 4. /v ((0dd(x) A Odd(v)) — Even(x+v)) Intro V
sum of aay odd integers is even. 5. Vu Vv ((0dd(u) A Odd(v)) — Even(u+v)) Intro V¥

fo=



Predicate Definitions

Even(x) =3y (x = 2y)

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—Even(x+y))

Let x and y be arbitrary integers. 1. Let x be an arbitrary integer
2. Lety be an arbitrary integer
Suppose that both are odd. 3.1 Odd(x) AOdd(y)  Assumption
/ -
SO X+y Is even. 3.9 Even(x+y)
Since x and y were arbitrary, the 3. (Odd(x) A Odd(y)) — Even(x+y) Direct Proof

4. Vv ((0dd(x) A Odd(v)) — Even(x+v)) Intro V

sum of any odd integers is even.
5. Yu Vv ((0dd(u) A Odd(v)) — Even(u+v)) Intro V



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd Odd(x)=3y (x =2y + 1)

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—Even(x+y))

Let x and y be arbitrary integers. 1. Let x be an arbitrary integer
2. Lety be an arbitrary integer
Suppose that both are odd 3.1 Odd(x) AOdd(y)  Assumption
(LJ{},QU 3.2 0dd(x) Elim A: 2.1
. XL 'd 3.3 0ddly)

(9 Jf’"— 3 X | EII%
\= 2+ | 'ﬁv/o»g( Wy 9 ?}1;%:4 Zf}\'\

&gifg,.ﬂj(\f 0\" €(ll'\9'
SO X+Y is even%' ] Eﬂv) =LhY € .‘,\7 :

3. (0dd(x) A Odd(y)) — Even(x+
4. Vv ((0dd(x) A Odd(v)) — Even(x+v)) Intro V
5. Yu Vv ((0dd(u) A Odd(v)) — Even(u+v)) Intro V

Since x and y were arbitrary, the
sum of any odd integers is even.



Even(x) =3y (x=2y)
English Proof: Even and Odd 0dd(x) =3y (x=2y+1)

Domain: Integers

Prove “The sum of two odd numbers is even.”

Let x and y be arbitrary integers. 1. Letxbe an arbitrary integer
2. Lety be an arbitrary integer

3.1 0Odd(x) A Odd(y) Assumption

Suppose that both are odd. 3.2 Odd(x) Elim A: 2.1

3.3 0Odd(y) Elim A: 2.1
Then, x = 2a+1 for some integer 3.4 3Jz(x=2z+1) Def of Odd: 2.2
a (depending on x) and 3.5 x=2a+l Elim 3: 2.4 (a dep x)
y = 2b+1 for some integer b 3.6 3Jz(y=2z+1) Def of Odd: 2.3
(depending on X). 3.7 y=2b+1 Elim 3: 2.5 (b dep y)

RO e, AT IR e PR R A/ CUL T

3.9 3z (x+y=22) Intro 3: ML 2 %

so x+V is, by definition, even. 3.10 Even(x+y) Def of Even

3. (0dd(x) A Odd(y)) — Even(x+y)
4. Vv ((0dd(x) A Odd(v)) — Even(x+v)) Intro V
5. Yu Vv ((0dd(u) A Odd(v)) — Even(u+v)) Intro V

Since x and y were arbitrary, the
sum of any odd integers is even.



Even(x) =3y (x=2y)
English Proof: Even and Odd 0dd(x) =3y (x=2y+1)

Domain: Integers

Prove “The sum of two odd numbers is even.”

Let x and y be arbitrary integers. 1. Letxbe an arbitrary integer
2. Lety be an arbitrary integer

3.1 0Odd(x) A Odd(y) Assumption

Suppose that both are odd. 3.2 Odd(x) Elim A: 2.1

3.3 0Odd(y) Elim A: 2.1
Then, x = 2a+1 for some integer 3.4 3Jz(x=2z+1) Def of Odd: 2.2
a (depending on x) and 3.5 x=2a+l Elim 3: 2.4 (a dep x)
y = 2b+1 for some integer b 3.6 3z (y=2z+1) Def of Odd: 2.3
Their sum is x+y = ... = 2(a+b+1) 3.8 xty=2(a+tb+1) Algebra

3.9 3z (x+y=2z2) Intro 3: 2.4
so x+V is, by definition, even. 3.10 Even(x+y) Def of Even

3. (0dd(x) A Odd(y)) — Even(x+y)
4. Vv ((0dd(x) A Odd(v)) = Even(x+v)) Intro V
5. Yu Vv ((0dd(u) A Odd(v)) — Even(u+v)) Intro V

Since x and y were arbitrary, the
sum of any odd integers is even.



Predicate Definitions

Even(x) =3y (x = 2y)

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”

Proof: Let x and y be arbitrary integers.

Suppose that both are odd. Then, x = 2a+1 for some
integer a (depending on x) and y = 2b+1 for some integer
b (depending on x). Their sum is x+y = (2a+1) + (2b+1) =
2a+2b+2 = 2(a+b+1), so x+v is, by definition, even.

Since x and y were arbitrary, the sum of any two odd
integers is even.



Predicate Definitions

Even(x) =3y (x = 2y)

Domain of Discourse

Integers

Prove “The sum of two odd numbers is even.”

Proof: Let x and y be arbitrary odd integers.

Then, x = 2a+1 for some integer a (depending on x) and
y = 2b+1 for some integer b (depending on x). Their sum
is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is,

by definition, even.

Since x and y were arbitrary, the sum of any two odd

integers is even. i

Vx Yy ((Odd(x) A Odd(y))—Even(x+y))



Proof Strategies: Counterexamples

To disprove Vx P(x) prove El)rlP(x) :
* Works by de Morgan’s Law: =Vx P(x) = 3x—P(x)

 All we need to do that is find an x for which P(x) is
false

* This example is called a counterexample to Vx P(x).

e.g. Disprove “Every prime number is odd”

Sy ( Pty = 8496
A - dx))
— 3x( [pneWA70d
- (e A0 0dd(2)




Proof Strategies: Proof by Contrapositive

If we assume —q and derive —p, then we have proven

—lwhich Is equivalent to provin@
4‘/—\3—-\

1.1. —q Assumption

1. —q—> —p Direct Proof Rule

2. p—>q  Contrapositive: 1



Proof by Contradiction: One way to prov@

If we assume p and derive F (a contradiction), then
we have proven —p.

1.1. p  Assumption

1.3. E
1. p—oF Direct Proof rule
2. pvFE Law of Implication: 1

3. —p Identity: 2



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd Odd(x)=3y (x =2y + 1)

Domain of Discourse
Integers

Prove: “No integer is bot

dd.”

English proof: X (Even(x)AOdd(x 7f

=Vx —1(Even(x)AOdd(x))
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Predicate Definitions

Domain of Discourse

Even and Odd  [Even(x) =3y (x = 2y)

Odd(x)=3y (x =2y + 1) Integers
Prove: “No integer is both even and odd.”
English proof: — dx (Even(x)AOdd(x))
=Vx —1(Even(x)AOdd(x))

Proof: We work by contradiction. Let x be an arbitrary
integer and suppose that it is both even and odd.
Then x=2a for some integer a and x=2b+1 for some
integer b. Therefore 2a=2b+1 and hence a=b+.

But two integers cannot differ by % so this is a
contradiction. So, no integer is both even and odd. B

N



Domain of Discourse

Rationality | Real Numbers

* A real number x is rational iff there exist integers p
and q with g#0 such that x=p/q.

Rational(x) := Jp 3q (((Integer(p) A Integer(q)) A (x=p/q)) A q#0)



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3p Aq (Integer(p) A Integer(q) A (x = p/q) A (g # 0))

Prove: “The product of two rational numbers is
rational.”

Formally, prove Vx Vy ((Rational(x) A Rational(y)) — Rational(xy))



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3p Aq (Integer(p) A Integer(q) A (x = p/q) A (g # 0))

Prove: “The product of two rational numbers is
rational.”

Proof: Let x and y be arbitrary rational numbers.

A=Yy S by Orhy b2 (dofed & 1
Y= /A A nde, C/d/ dg o ( /o\,&//)

vy =(a) (A = 55 d# 0
Yy = (4/1) T » b‘a& o
XY Vs va o

Since x and y were arbitrary, we have shown that the
product of any two rationals is rational. B



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3p Aq (Integer(p) A Integer(q) A (x = p/q) A (g # 0))

Prove: “The product of two rational numbers is
rational.”

Proof: Let x and y be arbitrary rational numbers.

Then, x = a/b for some integers a, b, where b0, and

vy = c¢/d for some integers c,d, where d=0.

Multiplying, we get xy = (a/b)(c/d) = (ac)/(bd).

Since b and d are both non-zero, so is bd. Furthermore,
ac and bd are integers. So, by definition, xy is rational.

Since x and y were arbitrary, we have shown that the
product of any two rationals is rational. ®




Strategies

* Simple proof strategies already do a lot
— counter examples
— proof by contrapositive
— proof by contradiction

 Later we will cover a specific strategy that applies
to loops and recursion (mathematical induction)



Applications of Predicate Logic

 Remainder of the course will use predicate logic to
prove important properties of interesting objects
— start with math objects that are widely used in CS
— eventually more CS-specific objects

 Encode domain knowledge in predicate definitions
 Then apply predicate logic to infer useful results

Domain of Discourse Predicate Definitions
Integers Even(x) =3y (x = 2-y)
pdd(x) =dy (x=2-y+1) |




Set Theory

Sets are collections of objects called elements.

Write 2 € B to say that a is an element of set B,
and a & B to say that it is not.

Some simple examples
A= {1}

B={1, 3, 2}

c={, 1}

D={{17}, 17}

E={1, 2,7, cat, dog, I, a}
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Some Common Sets

ke
{ey

N is the set of Natural Numbers; N ={0, 1, 2, ...}

Z. is the set of Integers; Z =1...,,-2,-1,0, 1, 2, ...}

Q is the set of Rational Numbers; e.g. %, -17, 32/48
R is the set of Real Numbers; e.g. 1, -17, 32/48, ,\/2
[n] is the set {1, 2, ..., n} when n is a natural number
{} = @\is the empty set; the only set with no elements

CAd %\/l’ S




Sets can be elements of other sets

For example
A = {{1},{2},{1,2},0}
B={12}

Then B € A.




Definitions

A and B are equal if they have the same elements

A=B =V x(xe A<>xe B)

 Ais asubset of B if every element of A is also in B

AcCcB=Vx(xe A— xe B)
ACh oy ASB bt A 2K

- Note: (A=B) = (AS B) A(BCA)

[ —



Definition: Equality

A and B are equal if they have the same elements

A=B =V x(xe A<>xe B)

A={1, 2,3}

o
B =13, 4, 5) C—;b’:t

C=13, 4}

D=14,3, 3} Which sets are equal to each other?
E={3,4,3}

F=1{4, {\3,_}}




Definition: Subset

A is a subset of B if every element of A is also in B

AcB=Vx(xe A— xe B)

A={1, 2,3}
B=1{3, 4,5}
C=1{3, 4}

QUESTIONS
D A? ‘/




Building Sets from Predicates

S = the set of all* x for which P(x) is true

S ={x:P(x)}

S = the set of all x in A for which P(x) is true

S={xe A:P(x)} = <

“ix s 04 A xet)

“in the domain of P, usually called the “universe” U




Set Operations

AUB={x:(x€A)V(x €B)} Union

ANB ={x:(x €A)A(x €B)} Intersection

A\B={x:(x€A)A(x & B)} SetDifference
X = (v xR\

—

A=1{1,2, 3} QUESTIONS
B={3,5, 6} > Using A, B, C and set operations, make...
C={§q,4} / [6]=AUBUC

{31=ANB=ANC

{1,2}=A\B=A\C




A

More Set Operations

ADB={x:(x€A) D (x€B)}

Symmetric

A={x:x¢A)}

(with respect to universe U)

A={1;2;é}
B={1,2,4,6} N ADB={3,4,6)

Universe:

U=1{1,2,3,4,5,6} A= 14,561

Difference

Complement



It's Boolean algebra again

 Definition for U based on V

AUB={x:(x€A)V(x €B)}

 Definition for N based on A

ANB={x:(x€A)A(x €B)}

e Complement works like —

&
A={x:-(x €A} 0 6

| <>

-~




De Morgan’s Laws

AUB=ANRA
- 1 (xely \/W’-I}/
%Wé/éN /\’I(Yfﬁ)
z Y%ﬁ N x¥
o = XA A XE
ANB=AUB = xéANS

Proof technique:

To show C = D show
xe C— xe Dand
xe D>xeC



Distributive Laws

AN(BUC)=ANB)UANC)
AUBNC)=(AUB)n (4 UC(C)




A Simple Set Proof

Prove that for any sets A and B we have (ANB)C A

Remember the definition of subset?
XCY=Vx(xeX->xe€Y)



A Simple Set Proof
Prove that for any sets A and B we have (ANB)C A

Remember the definition of subset?
XCY=Vx(xeX->x€eY)

Proof: Let A and B be arbitrary sets and x be

an arbitrary element of A N B.
Then, by definitionof AN B, x € Aand x € B.

It follows that x € A, as required.



Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:Bc A}

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)=?

P(D)=?



Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:Bc A}

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)={{M, W, F}, {M, W}, {M, F}, {W, F}, {M}, {W3}, {F}, &}

P(Q)={D} #= O



Cartesian Product

AXB={(a,b):a€AbeB}

R X R is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
7. X 7. is “the set of all pairs of integers”

If A={1, 2}, B={a, b, c}, then A X B ={(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

AXQP={(a,b):ac€cANDbed}={(a,b):a€A ANF} =0



Representing Sets Using Bits

* Suppose universe U is {1,2, ..., n}
 Can represent set B € U as a vector of bits:
bib, ..b, where b; =1wheni€B
b; =0wheni & B
— Called the characteristic vector of set B

 Given characteristic vectors for A and B
— What is characteristic vector for AU B? AN B?



UNIX/Linux File Permissions

e 1s -1
drwxr—-xr-x ... Documents/

—rw—r——r—— ... filel

e Permissions maintained as bit vectors
— Letter means bhitis 1
— “=" means bit is O.



Bitwise Operations

01101101 Java: z=x|y
v 00110111
01111111

00101010 Java: z=x&y
A 00001111
00001010

01101101 Java: z=x’y
@®@ 00110111
01011010




A Useful Identity

e If xandy are bits: (x@y)Py="7?

 What if x and y are bit-vectors?



Private Key Cryptography

* Alice wants to communicate message secretly to
Bob so that eavesdropper Eve who hears their
conversation cannot tell what Alice’'s message is.

* Alice and Bob can get together and privately share
a secret key K ahead of time.

i )
encrypt | | decrypt

i |
1
| plaintext : : plaintext :
ISENDER————»{ key | ! » | key ———» RECEIVER |
! message . : message .
. I . I
: | ! |
(o 19
| l\..-. 'w.f
.{ﬁ r:tl'-}"' f
|'ﬁj-’: }"I
I-x_.-". | I|




One-Time Pad

* Alice and Bob privately share random n-bit vector K
— Eve does not know K

e Later, Alice has n-bit message m to send to Bob
— Alice computes C=m ® K
— Alice sends C to Bob
— Bob computes m = C @ K which is (m @ K) ® K

 Eve cannot figure out m from C unless she can
guess K




Russell’s Paradox

S={x:x¢&x}

Suppose for contradiction that S € S...



Russell’s Paradox

S={x:x€&x}

Suppose for contradiction that S € S. Then, by definition of
S,S &5, but that’s a contradiction.

Suppose for contradiction that S € S. Then, by definition of
the set S, S € 5, but that’s a contradiction, too.

This is reminiscent of the truth value of the statement “This
statement is false.”



