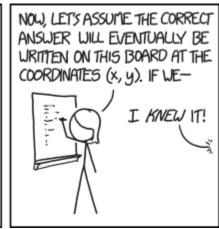
CSE 311: Foundations of Computing

Lecture 9: English Proofs, Strategies, Set Theory





Last class: Inference Rules for Quantifiers

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c}
\forall x P(x) \\
\therefore P(a) \text{ for any } a
\end{array}$$

* in the domain of P. No other name in P depends on a

 $\exists x P(x)$

∴ P(c) for some special** c

** c is a NEW name. List all dependencies for c.

Last class: Even and Odd

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Prove: "The square of every even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

2.1	Even(a)	Assumption
~ . -	LVCII(a)	Assumption

2.2
$$\exists y (a = 2y)$$
 Definition of Even

2.3
$$a = 2b$$
 Elim \exists : b special depends on a

2.4
$$a^2 = 4b^2 = 2(2b^2)$$
 Algebra

2.5
$$\exists y (a^2 = 2y)$$
 Intro \exists rule

2. Even(a)
$$\rightarrow$$
Even(a²) Direct proof rule

3.
$$\forall x (Even(x) \rightarrow Even(x^2))$$
 Intro $\forall : 1,2$

Last Class: Even and Odd

Even(x) $\equiv \exists y (x=2y)$ $Odd(x) \equiv \exists y (x=2y+1)$ Domain: Integers

Prove "The square of every even integer is even."

even integer.

Proof: Let a be an arbitrary 1. Let a be an arbitrary integer

2.1 Even(a) Assumption

Then, by definition, a = 2bfor some integer b (depending on a).

2.2 $\exists y (a = 2y)$ Definition

2.3 a = 2b

b special depends on **a**

Squaring both sides, we get $2.4 \text{ a}^2 = 4b^2 = 2(2b^2)$ Algebra $a^2 = 4b^2 = 2(2b^2)$.

Since 2b² is an integer, by definition, a² is even.

2.5 $\exists y (a^2 = 2y)$

2.6 Even(a²)

Definition

Since a was arbitrary, it follows that the square of every even number is even. 2. Even(a) \rightarrow Even(a²)

3. $\forall x \text{ (Even(x)} \rightarrow \text{Even(x}^2\text{))}$

Proofs

- Formal proofs follow simple well-defined rules and should be easy for a machine to check
 - as assembly language is easy for a machine to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
 - also easy to check with practice
 (almost all actual math and theory in CS is done this way)
 - English proof is correct if the <u>reader</u> believes they could translate it into a formal proof

(the reader is the "compiler" for English proofs)

Predicate Definitions

Even(x)
$$\equiv \exists y \ (x = 2y)$$

Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse Integers

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Predicate Definitions

Even(x)
$$\equiv \exists y \ (x = 2y)$$

Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse Integers

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Predicate Definitions

Even(x)
$$\equiv \exists y \ (x = 2y)$$

Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse
Integers

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Predicate Definitions

Even(x)
$$\equiv \exists y \ (x = 2y)$$

Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse

Integers

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

- 1. Let x be an arbitrary integer

2. Let y be an arbitrary integer

3.1 Odd(x) 10ddy) Azwy

-. Xty is even

Since x and y were arbitrary, the sum of any odd integers is even. 7.7 Even(Xty)

- 3. $(Odd(x) \land Odd(y)) \rightarrow Even(x+y)$
- **4.** $\forall v ((Odd(x) \land Odd(v)) \rightarrow Even(x+v))$ Intro \forall
- **5.** $\forall u \ \forall v \ ((Odd(u) \land Odd(v)) \rightarrow Even(u+v))$ Intro \forall

Predicate Definitions

Even(x)
$$\equiv \exists y \ (x = 2y)$$

Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse

Integers

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.

- 1. Let x be an arbitrary integer
- 2. Let y be an arbitrary integer
 - 3.1 $Odd(x) \wedge Odd(y)$ Assumption

so x+y is even.

Since x and y were arbitrary, the sum of any odd integers is even.

3.9 Even(x+y)

3. $(Odd(x) \land Odd(y)) \rightarrow Even(x+y)$ Direct Proof

4. $\forall v ((Odd(x) \land Odd(v)) \rightarrow Even(x+v))$ Intro \forall

5. $\forall u \ \forall v \ ((Odd(u) \land Odd(v)) \rightarrow Even(u+v))$ Intro \forall

Predicate Definitions

Even(x)
$$\equiv \exists y \ (x = 2y)$$

Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse

Integers

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.

: X=Za+1 for /one integer
a (depulse 2)

y=24+1 for pure integer

so x+y is even.

Since x and y were arbitrary, the sum of any odd integers is even.

- 1. Let x be an arbitrary integer
- 2. Let y be an arbitrary integer
 - 3.1 $Odd(x) \wedge Odd(y)$ Assumption
 - **3.2** Odd(x) Elim ∧: 2.1
 - 3.3 Odd(y) Elim \wedge : 2.1
- 3-4 3-(x:22+1)
- 3. $(Odd(x) \land Odd(y)) \rightarrow Even(x+y)$
- **4.** $\forall \mathbf{v} ((\mathrm{Odd}(\mathbf{x}) \wedge \mathrm{Odd}(\mathbf{v})) \rightarrow \mathrm{Even}(\mathbf{x}+\mathbf{v}))$ Intro \forall
- **5.** $\forall u \ \forall v \ ((Odd(u) \land Odd(v)) \rightarrow Even(u+v))$ Intro \forall

English Proof: Even and Odd

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.

- 1. Let x be an arbitrary integer
- 2. Let y be an arbitrary integer

Suppose that both are odd.

Then, x = 2a+1 for some integer a (depending on x) and y = 2b+1 for some integer b (depending on x).

so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any odd integers is even.

3.1 Odd(x) \land Odd(y) Assumption 3.2 Odd(x) Elim \land : 2.1 3.3 Odd(y) Elim \land : 2.1

3.4
$$\exists z (x = 2z+1)$$
 Def of Odd: 2.2
3.5 $x = 2a+1$ Elim \exists : 2.4 (a dep x)

3.6
$$\exists z (y = 2z+1)$$
 Def of Odd: 2.3
3.7 $y = 2b+1$ Elim \exists : 2.5 (b dep y)

3.f
$$x+y=2q+1+2h+1=2(q+h+1)$$

3.9 $\exists z (x+y=2z)$ Intro $\exists : 2 \in S$
3.10 Even(x+y) Def of Even

- 3. $(Odd(x) \land Odd(y)) \rightarrow Even(x+y)$
- **4.** \forall **v** ((Odd(**x**) \land Odd(**v**)) \rightarrow Even(**x**+**v**)) Intro \forall
- **5.** $\forall u \ \forall v \ ((Odd(u) \land Odd(v)) \rightarrow Even(u+v))$ Intro \forall

English Proof: Even and Odd

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.

1. Let x be an arbitrary integer

2. Let y be an arbitrary integer

Suppose that both are odd.

Then, x = 2a+1 for some integer a (depending on x) and y = 2b+1 for some integer b (depending on x).

Their sum is x+y = ... = 2(a+b+1)

so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any odd integers is even.

3.1 Odd(x) \land Odd(y) Assumption 3.2 Odd(x) Elim \land : 2.1 3.3 Odd(y) Elim \land : 2.1

3.4 $\exists z (x = 2z+1)$ Def of Odd: 2.2

3.5 x = 2a+1 Elim \exists : 2.4 (a dep x)

3.6 $\exists z (y = 2z+1)$ Def of Odd: 2.3

3.7 y = 2b+1 Elim \exists : 2.5 (b dep y)

3.8 x+y = 2(a+b+1) Algebra

3.9 $\exists z (x+y=2z)$ Intro $\exists : 2.4$

3.10 Even(x+y) Def of Even

3. $(Odd(x) \land Odd(y)) \rightarrow Even(x+y)$

4. $\forall \mathbf{v} ((\mathrm{Odd}(\mathbf{x}) \wedge \mathrm{Odd}(\mathbf{v})) \rightarrow \mathrm{Even}(\mathbf{x} + \mathbf{v}))$ Intro \forall

5. $\forall u \ \forall v \ ((Odd(u) \land Odd(v)) \rightarrow Even(u+v))$ Intro \forall

Predicate Definitions

Even(x)
$$\equiv \exists y \ (x = 2y)$$

Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse Integers

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary integers.

Suppose that both are odd. Then, x = 2a+1 for some integer a (depending on x) and y = 2b+1 for some integer b (depending on x). Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd integers is even.

Predicate Definitions

Even(x)
$$\equiv \exists y \ (x = 2y)$$

Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse
Integers

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary odd integers.

Then, x = 2a+1 for some integer a (depending on x) and y = 2b+1 for some integer b (depending on x). Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd integers is even. ■

 $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Proof Strategies: Counterexamples

To disprove $\forall x P(x)$ prove $\exists x P(x)$:

- Works by de Morgan's Law: $\neg \forall x P(x) \equiv \exists x \neg P(x)$
- All we need to do that is find an x for which P(x) is false
- This example is called a *counterexample* to $\forall x P(x)$.

e.g. Disprove "Every prime number is odd"

= 7x (pme(x) + add(x)) = 7x (pme(x) 1,70dd(x)) Prime(x) 1,70dd(x)

Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

1.1.
$$\neg q$$
 Assumption

1. $\neg q \rightarrow \neg p$ Direct Proof Rule 2. $p \rightarrow q$ Contrapositive: 1

Proof by Contradiction: One way to prove

If we assume p and derive F (a contradiction), then we have proven $\neg p$.

- 1. $p \rightarrow F$ Direct Proof rule
 2. $\neg p \lor F$ Law of Implication: 1
 3. $\neg p$ Identity: 2
 - Identity: 2

Predicate Definitions

Even(x)
$$\equiv \exists y \ (x = 2y)$$

Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse

Integers

Prove: "No integer is both even and odd."

English proof: $\exists x (Even(x) \land Odd(x))$

 $\equiv \forall x \neg (Even(x) \land Odd(x))$

Proof

Suppose that sheger X is both ever Suppose that sheger X is both ever in X=2a and x=2b+1 for sheger and b depends on X. This a contrashed since no two integer differ by 1/2 No integer I both odd andere

Predicate Definitions

Even(x)
$$\equiv \exists y \ (x = 2y)$$

Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse
Integers

Prove: "No integer is both even and odd."

English proof: $\neg \exists x (Even(x) \land Odd(x))$

 $\equiv \forall x \neg (Even(x) \land Odd(x))$

Proof: We work by contradiction. Let x be an arbitrary integer and suppose that it is both even and odd. Then x=2a for some integer a and x=2b+1 for some

integer b. Therefore 2a=2b+1 and hence $a=b+\frac{1}{2}$.

But two integers cannot differ by ½ so this is a contradiction. So, no integer is both even and odd. ■

Rationality

 A real number x is rational iff there exist integers p and q with q≠0 such that x=p/q.

Rational(x) := $\exists p \exists q (((Integer(p) \land Integer(q)) \land (x=p/q)) \land q \neq 0)$

Rationality

Domain of Discourse
Real Numbers

Predicate Definitions

Rational(x) := $\exists p \ \exists q \ (\text{Integer}(p) \land \text{Integer}(q) \land (x = p/q) \land (q \neq 0))$

Prove: "The product of two rational numbers is rational."

Formally, prove $\forall x \forall y ((Rational(x) \land Rational(y)) \rightarrow Rational(xy))$

Rationality

Domain of Discourse Real Numbers

Predicate Definitions

Rational(x) := $\exists p \; \exists q \; (Integer(p) \land Integer(q) \land (x = p/q) \land (q \neq 0))$

Prove: "The product of two rational numbers is rational."

Proof: Let x and y be arbitrary rational numbers.

1. $x = \frac{9}{6}$ for integers $\frac{9}{6}$, $\frac{6}{6}$ (Legend a X) $y = \frac{6}{4}$ for integers $\frac{9}{6}$, $\frac{6}{4}$ (Legend a X) $\frac{9}{6}$ $\frac{6}{4}$ $\frac{1}{6}$ $\frac{1}{6}$ ac, Ild therein : xy is rates

Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Predicate Definitions

Rational(x) := $\exists p \ \exists q \ (\text{Integer}(p) \land \text{Integer}(q) \land (x = p/q) \land (q \neq 0))$

Prove: "The product of two rational numbers is rational."

Proof: Let x and y be arbitrary rational numbers.

Then, x = a/b for some integers a, b, where $b\neq 0$, and y = c/d for some integers c,d, where $d\neq 0$.

Multiplying, we get xy = (a/b)(c/d) = (ac)/(bd).

Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. So, by definition, xy is rational.

Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Strategies

- Simple proof strategies already do a lot
 - counter examples
 - proof by contrapositive
 - proof by contradiction
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

Applications of Predicate Logic

- Remainder of the course will use predicate logic to prove <u>important</u> properties of <u>interesting</u> objects
 - start with math objects that are widely used in CS
 - eventually more CS-specific objects
- Encode domain knowledge in predicate definitions
- Then apply predicate logic to infer useful results

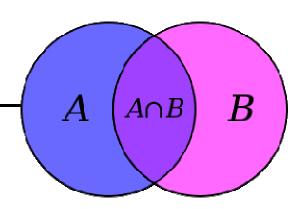
Domain of Discourse
Integers

Predicate Definitions

Even(x)
$$\equiv \exists y (x = 2 \cdot y)$$

Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$

Set Theory



Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

Some simple examples $A = \{1\}$ $B = \{1, 3, 2\}$ $C = \{\Box, 1\}$ $D = \{\{17\}, 17\}$ $E = \{1, 2, 7, cat, dog, \emptyset, \alpha\}$

Some Common Sets

N is the set of **Natural Numbers**; $\mathbb{N} = \{0, 1, 2, ...\}$ zahlen \mathbb{Z} is the set of **Integers**; $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ quitant \mathbb{Q} is the set of **Rational Numbers**; e.g. ½, -17, 32/48 \mathbb{R} is the set of **Real Numbers**; e.g. 1, -17, 32/48, π , $\sqrt{2}$ [n] is the set {1, 2, ..., n} when n is a natural number $\{\}$ = \emptyset is the **empty set**; the *only* set with no elements

[1] >1,2,-,43

Sets can be elements of other sets

For example $A = \{\{1\}, \{2\}, \{1,2\}, \emptyset\}$ $B = \{1,2\}$ Then $B \in A$.

Definitions

A and B are equal if they have the same elements

$$A = B \equiv \forall x (x \in A \leftrightarrow x \in B)$$

A is a subset of B if every element of A is also in B

$$A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$$

$$A \subset B \mod A \subseteq B \mod A \neq B$$

• Note: $(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$

Definition: Equality

A and B are equal if they have the same elements

$$A = B \equiv \forall x (x \in A \leftrightarrow x \in B)$$

Which sets are equal to each other?

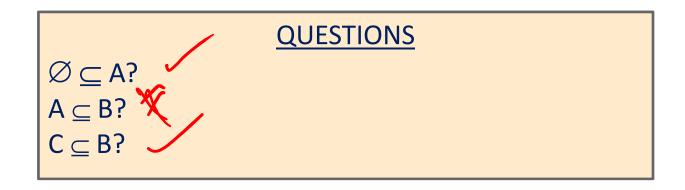
Definition: Subset

A is a subset of B if every element of A is also in B

$$A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$$

A =
$$\{1, 2, 3\}$$

B = $\{3, 4, 5\}$
C = $\{3, 4\}$



Building Sets from Predicates

S =the set of all* x for which P(x) is true

$$S = \{x : P(x)\}$$

S =the set of all x in A for which P(x) is true

$$S = \{x \in A : P(x)\}$$

$$= \{x \in A : P(x)\}$$

*in the domain of P, usually called the "universe" U

Set Operations

$$A \cup B = \{ x : (x \in A) \lor (x \in B) \}$$
 Union

$$A \cap B = \{ x : (x \in A) \land (x \in B) \}$$
 Intersection

$$A \setminus B = \{ x : (x \in A) \land (x \notin B) \}$$
 Set Difference

A =
$$\{1, 2, 3\}$$

B = $\{3, 5, 6\}$
C = $\{3, 4\}$

QUESTIONS

Using A, B, C and set operations, make...

$$[6] = A \cup B \cup C$$

$$\{3\} = A \cap B = A \cap C$$

$$\{1,2\} = A \setminus B = A \setminus C$$

More Set Operations

$$A \oplus B = \{ x : (x \in A) \oplus (x \in B) \}$$

Symmetric Difference

$$\overline{A} = \{ x : x \notin A \}$$
 (with respect to universe U)

Complement

A = {1, 2, 3}
B = {1, 2, 4, 6}
Universe:
U = {1, 2, 3, 4, 5, 6}

$$\overline{A} = \{4,5,6\}$$

$$A \oplus B = \{3, 4, 6\}$$

 $\overline{A} = \{4,5,6\}$

It's Boolean algebra again

Definition for U based on V

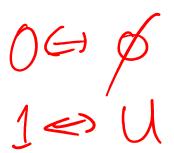
$$A \cup B = \{ x : (x \in A) \lor (x \in B) \}$$

Definition for ∩ based on ∧

$$A \cap B = \{ x : (x \in A) \land (x \in B) \}$$

Complement works like ¬

$$\overline{A} = \{ x : \neg (x \in A) \}$$



De Morgan's Laws

$$\overline{A \cup B} = \bar{A} \cap \bar{B}$$

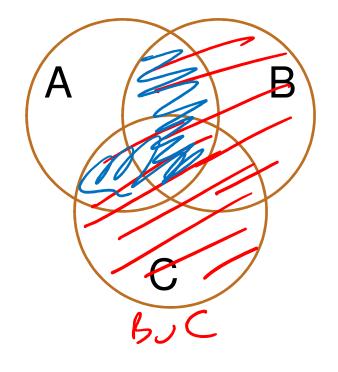
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

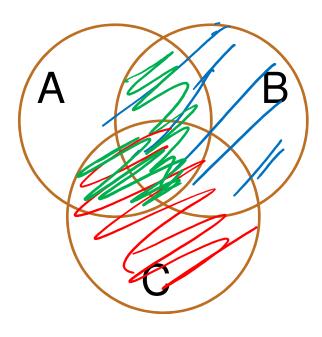
Proof technique: To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Distributive Laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$





A Simple Set Proof

Prove that for any sets A and B we have $(A \cap B) \subseteq A$

Remember the definition of subset?

$$X \subseteq Y \equiv \forall x \ (x \in X \to x \in Y)$$

A Simple Set Proof

Prove that for any sets A and B we have $(A \cap B) \subseteq A$

Remember the definition of subset?

$$X \subseteq Y \equiv \forall x \ (x \in X \to x \in Y)$$

Proof: Let A and B be arbitrary sets and x be an arbitrary element of $A \cap B$. Then, by definition of $A \cap B$, $x \in A$ and $x \in B$.

It follows that $x \in A$, as required.

Power Set

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

$$\mathcal{P}(\mathsf{Days})=?$$

$$\mathcal{P}(\emptyset)$$
=?

Power Set

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

• e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

$$\mathcal{P}(Days) = \{ \{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset \} \}$$

$$\mathcal{P}(\emptyset) = \{\emptyset\} \neq \emptyset$$

Cartesian Product

$$A \times B = \{ (a,b) : a \in A, b \in B \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A =
$$\{1, 2\}$$
, B = $\{a, b, c\}$, then A × B = $\{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$.

$$A \times \emptyset = \{(a, b) : a \in A \land b \in \emptyset\} = \{(a, b) : a \in A \land F\} = \emptyset$$

Representing Sets Using Bits

- Suppose universe U is $\{1,2,\ldots,n\}$
- Can represent set $B \subseteq U$ as a vector of bits:

```
b_1b_2 \dots b_n where b_i=1 when i \in B
b_i=0 when i \notin B
```

- Called the characteristic vector of set B
- Given characteristic vectors for A and B
 - What is characteristic vector for $A \cup B$? $A \cap B$?

UNIX/Linux File Permissions

- Permissions maintained as bit vectors
 - Letter means bit is 1
 - "-" means bit is 0.

Bitwise Operations

01101101

Java: z=x | y

V 00110111 01111111

00101010

Java:

z=x&y

00001111

00001010

01101101

Java: $z=x^y$

00110111

01011010

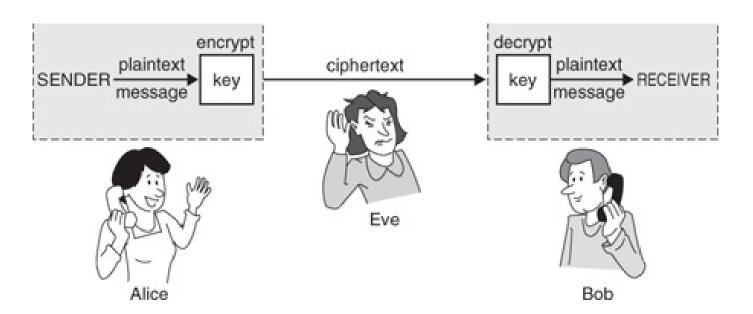
A Useful Identity

• If x and y are bits: $(x \oplus y) \oplus y = ?$

What if x and y are bit-vectors?

Private Key Cryptography

- Alice wants to communicate message secretly to Bob so that eavesdropper Eve who hears their conversation cannot tell what Alice's message is.
- Alice and Bob can get together and privately share a secret key K ahead of time.



One-Time Pad

- Alice and Bob privately share random n-bit vector K
 - Eve does not know K
- Later, Alice has n-bit message m to send to Bob
 - Alice computes $C = m \oplus K$
 - Alice sends C to Bob
 - Bob computes $m = C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

Russell's Paradox

$$S = \{ x : x \notin x \}$$

Suppose for contradiction that $S \in S$...

Russell's Paradox

$$S = \{ x : x \notin x \}$$

Suppose for contradiction that $S \in S$. Then, by definition of $S, S \notin S$, but that's a contradiction.

Suppose for contradiction that $S \notin S$. Then, by definition of the set $S, S \in S$, but that's a contradiction, too.

This is reminiscent of the truth value of the statement "This statement is false."