CSE 311: Foundations of Computing

Lecture 6: More Predicate Logic 4+ "\ V\L"‘W“&

(//
THREE LOGICIANS WALK INTO A BAR...

poes everyoNe ||
T
e 9009

[
- \
1

Administrative

* Homework 2 is now posted
— Make sure your submissions are readable!

* Monday: Martin Luther King Day holiday

Tuesday: Extra office hours
— Jason 10:30-11:20 CSE 220
— Josh 12:00-12:50 CSE 220

Wednesday: Richard Anderson will teach class
— Normal Wednesday office hours too after class.
(I will be away at workshop on complexity of proofs).

Last class: Predicates

Predicate
— A function that returns a truth value, e.g.,

Cat(x) ::= “xis a cat”

Prime(x) ::= “x is prime”

HasTaken(x, y) ::= “student x has taken course y”
LessThan(x, y) ::= “x<vy”

Sum(x,y, z) i=“x+y=2"

GreaterThan5(x) ::= “x > 5"

HasNChars(s, n) ::= “string s has length n”

L’(\B\r‘@diedt& can ha\iﬁf’vmyfng numbei’é ?ﬁéréﬁ ;Zr{é(gts

and input types. "o arg

Last class: Domain of Discourse

For ease of use, we define one “type”/“domain” that we work
over. This set of objects is called the “domain of discourse”.

For each of the following, what might the domain be?
(1) “x is a cat”, “x barks”, “x ruined my couch”

“mammals” or “sentient beings” or “cats and dogs” or ...
(2) “x is prime”, “x =07, “x < 07, “x is a power of two”
“numbers” or “integers” or “integers greater than 57 or ...

(3) “student x has taken course y” “x is a pre-req for z”
— W,

“students and courses” or “university entities” or ...

Last Class: Quantifiers

We use quantifiers to talk about collections of objects.

Vx P(x) I @)

P(x) is true for every x in the domain QUANTIFIEE
read as “for all x, P of x”

dx P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Last class: Statements with Quantifiers

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y=2")

Determine the truth values of each of these statements:

dx Even(x) T eg.2,4,6,..

Vx Odd(x) F eg.24,6,..

Vx (Even(x) v Odd(x)) T everyinteger is either even or odd
dx (Even(x) A Odd(x)) F no integer is both even and odd
Vx Greater(x+1, x) T adding 1 makes a bigger number

dx (Even(x) A Prime(x)) T Even(2) is true and Prime(2) is true

Last class: Statements with Quantifiers

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even” Greater(x, y) ::= “x>vy”
| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y=2")

Translate the following statements to English

Vx dy Greater(y, x)
There is no greatest integer.

Vx dy Greater(x, y)

There is no least integer.

Vx 3y (Greater(y, x) A Prime(y))

For every positive integer there is a larger number that is prime.

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

Every prime number is either 2 or odd.

dx Ay (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist prime numbers that differ by two.”

English to Predicate Logic

Predicate Definitions

Domain of Discourse Cat(x) ::= “x is a cat”
Mammals | Red(x) ::= “x is red”

\LikesTofu(x) ::= “x likes tofu”)

“Red cats like tofu”

VX ((Feduy 1Cat /X) — Lz%ﬁﬁ»@)

“Some red cats don’t like tofu”

R \}\7((47%;/ /(M) @ (il T8

English to Predicate Logic

Predicate Definitions

Domain of Discourse Cat(x) ::= “x is a cat”
Mammals | Red(x) ::= “x is red”

\LikesTofu(x) ::= “x likes tofu”)

“Red cats like tofu”

VX ((Red(x) A Cat(x)) — LikesTofu(x))

“Some red cats don’t like tofu”

dy ((Red(y) A Cat(y)) A —LikesTofu(y))

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “x is a cat”

Mammals Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”)

—

When putting two predicates together like this, we
‘ use an “and”.

When restricting to a smaller

“Red cats like tofu” < domain in a “for all” we use

implication.
When there’s no leading
quantification, it means “for all”.
—d When restricting to a smaller
“Some red cats don’t like tofu” €— domain in an “exists” we use
and.

“Some” means “there exists”.

Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit” |

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition! Which one “feels” right?

Key ldea: In every domain, exactly one of a
statement and its negation should be true.

Negations of Quantifiers

Predicate Definitions

| PurpleFruit(x) ::= “xis a purple fruit” |

(*) Vx PurpleFruit(x) (“All fruits are purple”)
What is the negation of (*)?

Key ldea: In every domain, exactly o
statement and its negation should be tr

“there exists a purple fruit”
(b) “there exists a non-purple fruit”

Domain of Discourse

of a

{plum}

Domain of Discourse

Domain of Discourse

(*), (a)

{apple}

{plum, apple}

(b), (c)

(a), (b)

Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit” |

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Key ldea: In every domain, exactly one of a
statement and its negation should be true.

Domain of Discourse Domain of Discourse Domain of Discourse
{plum} | ‘ {apple} J | {plum, apple}
(*), (a) (b), (c) (a), (b)

The only choice that ensures exactly one of the statement and its negation is (b).

De Morgan’s Laws for Quantifiers

—Vx P(x) = dx — P(x)
— dx P(x) = Vx = P(x)

g &= /\

De Morgan’s Laws for Quantifiers

—Vx P(x) = dx — P(x)
— dx P(x) = Vx = P(x)

La—
fr?
“There is no IargeWeg%r G r ead'W 7

@‘EM
= = XZV) ']kﬂ/l‘"‘?&,

= Vx dy—(x2y) I, Mega_
= Vx dy (y>x)

“For every integer there is a larger integer”

De Morgan’s Laws for Quantifiers

—V'X P(X)
— 3X P(X)

= dx —1 P(x)
= VX —1 P(x)

Negation of “Red cats like tofu”

VX ((Red(x) A Cat(x)) — LikesTofu(x))

“Some red cats don’t like tofu.”

3 x —((Red(x) A Cat(x)) & LikesTofu(x))
1 x (=(Red(x) A Cat(x)) v V LikesTofu(x))
1 x (= —(Red(x) A Cat(x)) A — - LikesTofu(x)) De Morgan
3 x %Bed(x A Cat(x)) A — LikesTofu(x))

De Morgan
Implication

Double Neg

Scope of Quantifiers

dx (P(x) A Qf
I
e

Z

3

I
1T | F
((\f T

dx P(x) A dx Q(x)

/

scope of quantifiers

dx (P(x) AQ(x)) vs. dxP(x) AdxQ(x)

This one asserts P This one asserts P and Q
and Q of the same x. of potentially different x’s.

Scope of Quantifiers

Example: Notlargest(x) =(dvy Greater (y, x)
= 1z Greater (z, x)

\n—

truth value:

doesn’t depend on y or Zz “bound variables”
does depend on X “free variable”

quantifiers only act on free variables of the formula

they quantif
v xmy) L,)

Quantifier “Style”

VX(HV (P(x,y) = V xQly,))

This isn’t “wrong”, it’s just horrible style.
Don’t confuse your reader by using the same
variable multiple times...there are a lot of letters...

Nested Quantifiers

e Bound variable names don’t matter
Vx dy P(x, y) = Va db P(a, b)

e Positions of quantifiers can sometimes change
Vx (Q(x) A Ty P(x, y)) = Vx Jy (Q(x) A P(x, y))

« But: orderis important...

Quantifier Order Can Matter

Domain of Discourse Predicate Definitions
Integers LGreaterEq(x, y) i=“x2y”

Ty
@231) a2

“There is a number greater than or equal to all numbers.”

4 Jx Vy Gre GreaterEq(x, yﬁ

“Every nfimber has a nhumber greater than or equal to it.”

Yy Ix GreaterEq(x, y)g <\’,'M-e 74v Z/i\

The purple statement requires an entire row to be true_
The red statement requires one entry in each column to be true

W‘/P Dt T
oy o

Quantification with Two Variables

expression

when true

when false

Vx V' y P(x, y)
= Wy Vx Pexy)

Every pair is true.

At least one pair is false.

dxdyP(x,y)
= Iy I V/y/)

At least one pair is true.

All pairs are false.

Vx3dyP(x,y)

%

We can find a specific y for
each x.

(X1, Y1), (X5, ¥3), (X3, ¥3)

Some x doesn’t have a
corresponding y.

Ay V xP(x, y)

We can find ONE y that
works no matter what x is.

(X1, ¥), (X5, ¥), (X3,)

For any candidate y, there is
an x that it doesn’t work for.

Logical Inference

Logical Inference

e So far we’ve considered:

— How to understand and express things using
propositional and predicate logic

— How to compute using Boolean (propositional) logic

— How to show that different ways of expressing or
computing them are equivalent to each other

* Logic also has methods that let us infer implied
properties from ones that we know

— Equivalence is a small part of this

Applications of Logical Inference

Software Engineering

— Express desired properties of program as set of logical
constraints

— Use inference rules to show that program implies that
those constraints are satisfied

e Artificial Intelligence

— Automated reasoning

Algorithm design and analysis

— e.8., Correctness, Loop invariants.

Logic Programming, e.g. Prolog | SAT/J [1f
— Express desired outcome as set of constraints

— Automatically apply logic inference to derive solution

Proofs

e Start with hypotheses and facts
* Use rules of inference to extend set of facts
 Result is proved when it is included In the set

An inference rule: Modus Ponens

e |f pand p — g are both true then g must be true

Write this rule as P,P—(

- g
* Given:
— If it is Monday then you have a 311 class today.
— It is Monday.

Therefore, by Modus Ponens:
— You have a 311 class today.

D
My First Proof! L’.%/‘VV

4

Show that r follows from p,p —> q,and g —r

P Given
p—>q Given

1

2.

3. g—r Given

4 B Mo doc fois Fran (D L
5 C[f (;’7 ml o (ad ¥

My First Proof!

Show that r follows from p,p —> q,and g —r

1. P Given

2. p—>q Given

3. qg—r Given

4. q MP: 1, 2
5.

r MP: 3, 4

Proofs can use equivalences too

Show that —p follows from p — q and —q
~—

1 Pp—(q Given —
2. —Q Given —

)[}3. —q — —p Contrapositive: 1
4 —P MP: 2, 3

Inference Rules

e Each inference rule is written as:
...which means that if both A and B
are true then you can infer C and

you can infer D. ~
— For rule to be correct/ (A A B) —» C)and

ust be ologies

 Sometimes rules don’t need anything to start with.
These rules are called axioms:

— e.8. Excluded Middle Axiom

A, B
. C,D

S P VTP

':QAW _

